

To whom exactly does inspiration belong? The creative rights and aesthetic boundaries behind AI-generated works

Zhongyu Xu^{a,*}

^aUniversity of South China, Hengyang 421001, China

ARTICLE INFO

Keywords:

AI + Art Automatic Art Creation
Creation Right
Aesthetic Edge Deep Learnin

ABSTRACT

With the rapid development of AI technology, its application in art creation is becoming more and more popular. An automatic generation system of AI art works can generate works of unique style and aesthetic value by means of deep learning algorithms. However, the question of creative ownership behind AI-generated works has always been ambiguous. In this paper, we discuss creative rights and aesthetic boundaries behind AI-generated works. However, there has not been a clear legal definition. In spite of this, AI's automatic generation of artworks has become a major trend. At present there are no laws or regulations that stop the development of AI + art.. On the basis of the above results, we have developed an AI generation system. Using AI technology, it automatically generates artwork that creators want. In addition, the public often believes that the ownership of AI-generated artworks belongs to the AI platform. In fact, the AI system is merely an auxiliary tool, and the creative inspiration still comes from the author. Therefore, this system can generate a contract for the AI system platform to this AI system waive the copyright. Register your copyright on the website of the National Copyright Center to avoid legal disputes and protect the legitimate rights and interests of creators.

1. Introduction

The rapid development of AI technology brings unprecedented opportunities and challenges for art creation in today's digital era. Traditional artistic creation model shows its limitations in meeting diverse aesthetic demand and personalized development, while AI's automatic creation system provides a new method for solving this problem. Automatic generation of AI art works based on deep learning algorithms can generate works of unique style and aesthetic value according to users' needs and preferences^[1]. The system enhances artistic creation efficiency as well as stimulates artist's creativity and provides a new direction for art creation in the future. Recently, as AI technology becomes mature and art creation digital transformation, AI automatic creation system has become one of the hot topics in art field. In this paper, there are three aspects: system framework, each level design, main function application. This paper aims at providing useful reference and inspiration for art creators and researchers, as well as promoting the further development and application of AI automatic art creation system^[2].

2. Current trends in AI + art creation

2.1. Digital Transformation in Artistic Creation and Technology-Driven Approaches

Globally, the digital transformation of art creation has become an inevitable trend in artistic reform and development. It is not only driven by technological progress, but also as a strategic choice to adapt to social changes and satisfy future aesthetic requirements. With the rapid development of computer, artificial intelligence, big data and other new technologies, the field of art creation has experienced unprecedented changes^[3]. These techniques transformed not only the tools and methods used in art creation, but also transformed the patterns and aesthetic experiences of art creation. For example, AI can automate and personalize artistic creation, while big data technology is able to precisely analyze audiences' aesthetic demands so as to create customized artworks for each user. It is this technology-driven art transformation that drives art creators to rethink the nature and goal of art, so that they can better cultivate their aesthetic ability and creativity^[4].

* Corresponding author.

E-mail addresses:18856633362@163.com

<https://doi.org/10.65455/aaир5915>

Received 28 July 2025; Received in revised form 30 July 2025; Accepted 28 August 2025; Available online 15 September 2025

<https://www.innoviair.cn/journal/AAIR>

2.2. The Rise of Personalized Artistic Creation and Its Need

Under the background of digital transformation in art creation, personalized art creation, taking audience as the center creation concept, becomes an important direction of art reform. Traditional art creation model often adopts "one size fits all" method, it can't satisfy the diverse aesthetic requirements and individual differences. However, along with society's increasing demand for creative art, art creation should pay more attention to cultivating audience's individual development and aesthetic ability^[5]. Personalized art creation focuses on providing customized artworks and creative strategies according to individual characteristics such as aesthetic preferences, interests, preferences and aesthetic styles. It enhances the audience's aesthetic experience and interest as well as stimulates their creativity and critical thinking. Therefore, it is important to develop a system supporting personalized art creation^[6].

2.3. The Potential of Artificial Intelligence Art Creation and Its Challenges

AI art creation has demonstrated tremendous development potential as an innovative model combining AI and artist's professional skills. In such a mode, not only do some creative tasks such as automatically creating artworks and offering creative advice, but also provide creative feedback and data analysis in real time so that they can better understand audiences' aesthetic needs so that they can optimize their creative strategies^[7]. However, AI art creation is faced with many challenges such as how to make sure its creative suggestions match the creative ideas of artists, how to keep artist leading role in AI creation, and how to deal with technology and art. These problems need to be solved together by artists, technology developers and policy makers in order to find a way to make full use of technology advantage while maintaining artistic essence.

3. Discussion on AI Automatic Artwork Generation Systems' Creative Rights and Aesthetic Boundaries

3.1. Definitions of Creative Rights and Legal Issues

Along with the wide application of artificial intelligence automatic generation system in artworks, the definition of creative rights becomes a legal problem that needs to be solved urgently. In traditional art creation, creative rights usually belong to creative artists. The creation process and creation intention are important bases on which creative power can be determined. However, the creation process involves automatic operation of AI algorithms and data-driven generation mechanism, making ownership more complex^[8]. On the one hand, during the process of creation, artists may provide creative outlines and creative resources, while specific creative details are automatically generated by AI. On the other hand, audience's aesthetic data may influence creative process as well, making creative results dependent in

part on audience feedback. Therefore, when defining creative right, we should take into account artist's creation intention, creative contribution of artificial intelligence system, and audience's aesthetic influence^[9]. At present, there has not been a clear unified standard to define AI's creative rights. From year 1st of AI (2023), multiple disputes over creative rights have occurred, as illustrated in Table 1 below. Although few in number, they are increasing year after year and pose challenges to legal protection of art creation. It is necessary to clarify the ownership and protection scope of artificial intelligence through legislation and judicial practice in order to protect the legitimate rights of artists, technology developers and audiences.

Table 1. the number of legal disputes over creation rights of AI-generated artworks in China over recent years and their treatment

Time range	The number of disputes	Processing result
2023	4	1 plaintiff won the case .3 defendants won the case
2024	9	2 plaintiffs won the case .7 defendants won the case
2025	20	2 plaintiffs won the cases, 2 defendants won the cases, the rest have no clear results yet

3.2. The Aesthetic Boundaries and the Challenges

The automatic creation of AI system brings new aesthetic experience to art creation and challenges traditional aesthetics boundaries. Traditional aesthetic standards often come from people's aesthetic experience and cultural tradition, while AI's works often have their own unique styles and forms, which may go beyond traditional aesthetics. For example, works created by AI can demonstrate unprecedented innovations in colour, composition, form and so on. While these innovations may be accepted and appreciated by some viewers, others may regard them as out of line with traditional aesthetic norms. As a result, the expansion of aesthetic boundaries by artificial intelligence requires audiences and art critics to re-examine and redefine aesthetics^[10]. What's more, AI creation's aesthetic boundary also involves cultural diversity and aesthetic relativity. Audiences with different cultural backgrounds may have different appreciation for AI works. Therefore, cultural differences should be fully taken into account when creating and appreciating art, so as to promote cultural communication and understanding. With the development of AI technology and digital transformation of art creation in the future, expansion of aesthetic boundaries will become a major research direction^[11].

3.3. The Social Impact of Artificial Intelligence and Ethical Issues

The wide application of artificial intelligence system in artistic creation has not only impacted the art creation deeply, but also posed the challenge to the social culture and ethics concept. On one hand, the popularization of artificial intelligence may cause artistic creation to become commercialization and homogenization, which causes its aesthetic value to be replaced by its market value. Through art education and culture policy, we should guide audiences to set up correct aesthetic concepts and support creative and cultural creation. The ethical issues associated with AI-generated content, on the other hand, have received wide attention^[12]. For example, artificial intelligence works can be used to mislead viewers, infringe copyrights, or engage in illegal activities. Therefore, it is necessary to strengthen the supervision and management of artificial intelligence creation by means of technology and legal norms, so as to guarantee the legality and morality of artificial intelligence creation. What's more, Artificial Intelligence Creation's social influence is also related to the career development and job opportunities of art creators^[13]. As AI technology is widely used in art creation, some art creation jobs may be replaced with artificial intelligence. Vocational education and skill training are required to help artists adapt themselves to digital transformation, and enhance their non-placeability in art creation. In the future, as AI technology continues to evolve and digital technology transforms into art works, we need to work together to solve the social impacts and ethical problems arising from AI creation in order to promote the healthy development of art creation and social culture^[14].

4. An AI-based Automatic Generation System for Artistic Works

4.1. Overall System Design

In order to construct the Artificial Intelligence Generation System for Artworks, we adopt the Integrated Development Environment (IDE) and Python and C++ programming languages. A relational database is MySQL and a non-relational MongoDB database. The system extensively employs artificial intelligence (AI) and big data technology to assist artistic creation, such as analyzing aesthetic behavior and preference data^[15]. Through deep learning model, this system can identify audiences' aesthetic patterns and preferences in order to provide more precise creative advice. Using big data technology to process and analyze massive amount of data generated by system, including audience's aesthetic record and artist's creation activity data. The system is able to extract valuable information through data mining and analysis to provide creative decision support to artists, as well as optimize the algorithm to generate personalized creative paths. In addition, this system provides a platform of collaborative creation between AI and artists, which serves as a bridge between artists and intelligent creation systems. On the platform, artists are able to plan and implement creative activities using smart tools. At the same time, this intelligent

system provides creative advice and assistance to artists based on their creative goals and feedback. The human-machine cooperative model is able to take full advantage of artist's professional advantage, and make full use of intelligent system's high efficiency and high efficiency. Moreover, HMI features strong online collaborative features which support resource sharing and exchange of experience among artists as well as innovation and improvement of creative methods.

4.2. System Main Levels Proposal

4.2.1. The Design of Data Layer Design

The data layer is the foundation of the whole system in AI based automatic creation system. Whether its design is reasonable or not relates directly to system running stability and data processing efficiency. Data layer is mainly responsible for the storage and management of audience's aesthetic data, artists' creation data and various information generated in operation. In order to guarantee data integrity and security, data layer adopts distributed database structure, which combines the merits of relational database and non-relational database. A relational database is used for storing structured data, such as basic information about audience, job evaluation and creation plan. These data are clearly structured and related. Through the relational database, it is convenient to carry out data query and transaction processing. A non-relational database is used for storing unstructured data, for example an audience's aesthetic behavior log, a work image file, and a record of a creative process. These data are more flexible and scalable, so they are better suited for large amount of complicated data generated during personalized creation. Data encryption technology has been adopted during data storage in order to ensure full protection of audience's privacy and artists' privacy. At the same time, in order to deal with data loss or damage risk, a comprehensive backup and recovery mechanism has been designed in the data layer. Regularly backing up data, it can be restored quickly if necessary to ensure that system functions normally.

4.2.2. The Logic Layer Design of the System

Logic layer plays a key role in data processing, business logic realization and personalized creation path. In logic layer design, OOP is used to divide system functions into multiple independent modules, each responsible for specific business logic. For example, the personalized creation module analyzes audience's aesthetic data, uses machine learning algorithms and data mining technology to create personalized artworks and creative paths. In this module, we consider various factors such as aesthetic preferences, interests, preferences, aesthetics etc. Through complex algorithms model, precise personalized creation plans can be realized. Collaborative creation module takes charge of interaction logic between artist and intelligent system to realize design, implement and monitor creation activities. In this module, artists can better manage creative process, evaluate effect of works, provide intelligent creation tools and assistant functions to adjust creative strategies based on real-time feedback. Take assisted creation as an example. By means of Python programming, this paper builds up a data set about audience aesthetics, including audience

characteristics and aesthetic preferences. The data file format: [Aesthetic Style, Favorite Works, Work Evaluation, Aesthetic Behavior Log], using big data analysis technology to predict audiences' aesthetic preferences and provide assistance for artists. The sample code is as follows:

```
# Audience Aesthetic Dataset, including the following:
# 'viewer_id': Viewer ID
# 'style_preference': Aesthetic style preference (quantified)
# 'favorite_genre': Favorite type of work (quantified)
# 'engagement_level': Work Evaluation (Quantified)
# 'interaction_frequency': Aesthetic Behavior Log (Quantified)

# Loading Data
data = pd.read_csv('viewer_aesthetic_data.csv')

# Use the K-means clustering algorithm
kmeans = KMeans(n_clusters=5, random_state=42) #
Suppose we are divided into 5 groups
data['cluster'] = kmeans.fit_predict(data_scaled)
```

Generate personalized creation paths based on clustering results

```
def generate_personalized_path(viewer_id):
    viewer_cluster = data.loc[data['viewer_id'] == viewer_id, 'cluster'].values[0]
```

The logic layer is designed to optimize algorithm and improve performance. Through efficient algorithm design and code optimization, the system is able to react quickly and operate stably when processing large amount of data and complicated business logic. Furthermore, a high efficient data interaction interface between data layer and application layer has been established in logic layer to ensure smooth data flow among different layers in order to realize overall cooperative operation.

4.2.3 Design of the Application Layer Design

Application layer is an interface for direct interaction between system and user. Its user experience and promotion effect are directly affected by its friendly and user-friendly design. Application layer provides different user interfaces for users, artists and system administrators. Each interface can be customized according to users' role and needs. The application layer provides a visual appreciation interface for audiences, including work view, job evaluation, and creation preferences. These functions guide audience to appreciate artworks easily through simple and clear interface design and operation process, and provide real time feedback on aesthetic experience. The artist interface emphasizes creation management function more strongly. It provides tools for creating work, uploading creation resources, analyzing audience aesthetic data, and creating interaction online. Through these tools, artists are able to plan and carry out creative activities conveniently and adjust creative strategies according to audience's aesthetic information. System administrator interface provides advanced functions such as system configuration, user management, data backup and recovery. Application layer design also emphasizes to optimize user experience. Through user interface friendly design, simplified operation process, variety of interaction

methods to improve user satisfaction. At the same time, the application layer supports access from a variety of terminal devices such as computers, tablets, mobile phones, etc.

4.3 System Database Design and Its Application

The storage layer plays an important role in the architecture of artificial intelligence automatic generation system. Its rationality and efficiency have a direct impact on performance, reliability and scalability. Storage layer takes charge of management and maintenance of large amount of data generated during system operation, including audience aesthetic records, artist creative materials, system configuration information, and temporary data. Considering the variety of data types and usage requirements, it adopts hierarchical storage strategy that integrates multiple storage technologies in order to ensure efficient data storage, fast access, and secure protection. According to structure degree, access frequency and importance of data, different storage media and technology are used respectively. For structured data such as basic audience information, work evaluation, and creation progress, RDBMS is used to organize and store these data in form. A relational database has powerful data integrity constraints, transaction processing capabilities, and a mature Query Language (SQL) to efficiently support complex data operations and query requirements. With relational databases, for example, it is easy to perform statistical analysis of work evaluations, ranking calculations, and query operations based on multiple conditions, providing precise data support for creating personalized creative paths.

For unstructured data such as image files of works, creative process records, and viewer's aesthetic behavior records, the system adopts a storage solution combining non-relational databases (NoSQL) and distributed file systems (DFS). Unstructured data is typically characterized by large volumes and various formats, which makes it difficult for efficient storage in conventional relational databases. With its flexible data model, high scalability and high performance, NoSQL database is suitable for such data storage. As the popular NoSQL database, for example, MongoDB supports document storage mode, which enables easy storage and retrieval of the metadata of works, as well as the viewer's aesthetic behaviors. At the same time, to large-capacity multimedia files such as work image and creative process records, the system uses distributed file system to store. A distributed file system can enhance storage capacity scalability, improve data reliability and access speed by distributing files between nodes. The Hadoop Distributed File System (HDFS), for example, ensures high data availability through multiple replica storage mechanisms for data blocks in unexpected situations like hardware failure. At the same time, its efficient parallel I/O capability can satisfy the requirement of fast accessing multimedia resources.

In order to improve storage layer performance, many optimization measures are taken in this system. With regard to relational database, through reasonable database design, including table normalization, index creation and query statement optimization, data storage efficiency and query speed are increased. For example, creating an index for a frequently queried field can significantly speed up a query's

response time. At the same time, database caching technology is adopted to cache frequently accessed data into memory, which further improves the speed of data reading. For distributed file system, through optimizing data block size, copy number, storage node layout, etc., the storage performance is improved greatly. For example, adjusting block size according to actual application requirements can strike a balance between storage space utilization and access speed. The reasonable number of replica can ensure data reliability and avoid unnecessary waste of memory space. Moreover, load balancing technology is adopted to allocate data access requests rationally among different storage nodes in order to avoid overload of individual nodes and enhance concurrent processing capability and stability.

4.4. Backup Strategy and Data Security

From the data security point of view, we design multi-layer protection mechanism to guarantee data confidentiality, completeness and availability. First of all, the system uses encryption technology to encrypt sensitive information during data storage. For sensitive data such as audience's personal information and work evaluation, the encryption algorithm is used to encrypt the data. Only authorized users have the ability to decrypt the data. Moreover, the system strictly restricts access rights of data through access control mechanism so as to make sure that only authorized users and applications have access to relevant data resources. At the same time, in order to prevent data loss and damage, the system implemented regular data backup policy. The backup strategy includes both full backup and incremental backup. Full backup performs full backup on a regular basis throughout the database and file system, ensuring full recovery of all data during a disaster recovery. Incremental backup will backup newly added or modified data between two full backups in order to increase backup efficiency and reduce storage space usage. Backup data is stored on remote backup servers to avoid losing data if local data centers go down. Furthermore, the system conducts periodic recovery tests of backup data to ensure its validity and integrity, enabling rapid recovery of system data when require.

4.5. Design of the System Security Design

Data security and privacy protection are indispensable to the design of system in today's digital era. Security layer design aims at providing comprehensive security protection for the whole system so as to ensure no leakage, manipulation or abuse of data on audience and artist. Security layer adopts multiple layers of security protection measures including network firewall, intrusion detection system, data encryption technique and user identity authentication. A network firewall and an intrusion detection system have been set up on network boundary for real-time monitoring of network traffic so as to guard against malicious attacks and illegal intrusion. Data encryption technology is used in data storage and transfer process. It is used to encrypt sensitive information during storage and transfer. In order to prevent unauthorized access, User Identity Authentication Mechanism strictly verifies user identity by user username, password, SMS authentication

code. Additionally, Security Layer conducts regular security audits and security scans to promptly identify and correct security vulnerabilities in the system, ensuring its security and stability. Through these multi-level security measures, security layer builds a solid security line for AI art work automatically generation system to provide users with safe and reliable environment for art creation.

4.6. Compatibility Design and System Scalability

With the rapid development of digital transformation in art creation, its scalability and compatibility is the key to ensure its long-term stability and continuous optimization. During the design process, the system takes into account future technology development and artistic creation requirements. Its modular architecture and open standards guarantee easy expansion and upgrade of functions of the system. Modular structure makes each function module relatively independent. When it is necessary to add a new function or optimize an existing function, it is possible to develop and test these modules independently without affecting others in the system. The design not only improves the system development efficiency, but also reduces maintenance cost. Furthermore, the system adheres to internationally recognized open standards and protocols including HTML5, CSS3, JavaScript, etc., ensuring stable operation on various operating systems and browsers, and supporting multiple terminal devices such as PC, tablet, mobile phone etc. The excellent compatibility makes the system adapt to different users' usage habits and equipment conditions. It provides powerful guarantee for wide application. At the same time, the system reserves interface to integrate with external systems such as art creation platform and online exhibition system, facilitates the integration of such system with other digital art creation systems, to share creative resources and to provide comprehensive support to digital art creation.

5. Main features of AI-assisted art creation system

5.1. Assistance in Intelligent Creation and Creation of Human-Machine Interaction

One of the key innovations in this system is intelligent creation assistance and human-machine collaborative creation function, aiming at achieving efficient and intelligent creation process by integrating AI technology and artist's professional creativity. The intelligent system provides creative tools and assistant functions such as intelligent creative assistant, creative process recording tool, real-time aesthetic analysis dashboard, etc. Intelligent Creation Assistant is able to recommend suitable creative resources and methods based on creation outline and goals for artists to quickly design high quality creative projects. The Creative Process Recording Tool is a tool that allows artists to record every step in their operations and thinking processes during the creation process, which will facilitate subsequent creative reflection and optimization. Real Time Aesthetic Analysis Dashboard provides real time feedback to artists about their aesthetic preferences, job evaluations, and aesthetic behavior analysis.

Moreover, the intelligent system is able to provide individual creative advice according to audience's aesthetics data so as to help artists pay more attention to each audience's aesthetic needs so as to realize teaching in accordance with individual aptitude. The human-machine collaborative creation model makes full use of artist's professional advantages, while making full use of intelligent systems to enhance quality and efficiency in creative work, offering better works to audiences.

5.2. Personalized Creation Paths Generating and Optimizing

The creation and optimization of personalized creation path is key to realize teaching students according to their ability. Through in-depth analysis of aesthetic data, such as aesthetic preferences, interests, preferences, aesthetics, aesthetic motives, etc., Python programming, advanced machine learning algorithms and data mining techniques are used to tailor each audience's creative path. Not only does it cover creative themes and styles, but it also dynamically adjusts creative content and difficulty in accordance with audience's aesthetic development. For example, an audience that excels at a particular style will automatically skip the basic content and move straight to higher level creation. For viewers with difficulty in certain areas, the system provides supplementary materials and practical guidance so that they can master their creative skills gradually. Moreover, the system is able to optimize the creative path according to the feedback and evaluation results of audience to ensure the scientificity and validity of the creation path. It not only enhances the creative efficiency and effectiveness of audiences, but also stimulates their creativity and creativity, which provides strong support for individual development.

5.3. Evaluation and feedback on real time creation

Real time creation evaluation and feedback functions are important to guarantee personalized creation. In this function, we conduct comprehensive and objective evaluation of audiences' creative achievements, including work assessment, creative process assessment and aesthetic behavior assessment. An intelligent evaluation engine is designed in this system, which can automatically analyze the style, technique, creativity and so on. These reports not only include scores, but also analyze audiences' performance at each stage to point out their strengths and weaknesses. For complex creative projects, the system provides online evaluation of artists and supports artists to add their own comments and suggestions. Additionally, the system provides real-time creative feedback based on assessment results, including suggestions on how to improve creative skills and how to adjust creative strategies. Timely and accurate feedback mechanism will help audience understand their creative situation timely, adjust creative method and plan so as to achieve their creative goals better. At the same time, through the evaluation result, artists can understand the overall creative situation of audience, adjust creative guidance strategy to ensure the validity and pertinence of creative guidance.

5.4. Generation Function of Copyright Ownership and Contract

In artistic creation field, copyright ownership is always concerned by creators, platforms and users. The system specially designed copyright ownership and contract creation functions in order to balance the interests of various parties and promote the healthy development of art creation. Through this feature, system operators can automatically create legally binding contracts through the system upon completion of creation, explicitly waiving copyright rights of the platform and transferring copyright to system operators. The design not only demonstrates respect for creator's rights, but also conforms to the basic principle of copyright law: copyright belongs to the creator unless clearly agreed upon. As far as specific implementation is concerned, the system will automatically prompt the operator whether or not it is necessary to create a copyright ownership contract. If an operator chooses to generate a contract, it automatically generates a detailed contract text based on the preset contract template. During the creation process, such as creating time, creating parameter, and operator information, etc. The text of this contract will make it clear that although this work is automatically generated by the system, it gives up copyright in the work based on the operator's dominant control over the creation process. The contract shall specify the right of use, modification and dissemination of the work by the operator, and the reasonable scope and restrictions on use by the platform in order to ensure full protection of both parties' rights. Moreover, in order to enhance the legal effect of contracts, electronic signature is provided in this system. The operator may confirm the contract contents by electronic signature in order to guarantee the validity and validity of contract. At the same time, a copy of the contract will be sent to the operator, which will be archived on the platform so that it can be used as evidence in future legal disputes. Its realization not only reflects the integration of technology and law, but also provides solid legal guarantee for digital art creation. This system not only makes artistic creation automatic and personalized, but also guarantees the legal rights of creators. It helps to stimulate the creative enthusiasm of creators and promote artistic creation prosperity as well as provide important legal support for digital transformation of art creation. In the future, as technology advances and legal environment is improved, it will provide a solid guarantee for the healthy development of art.

6. Conclusion

AI+ART is a new way to develop modern art creation based on artificial intelligence. Through system framework design and function implementation, the system is able to satisfy the need of personalized art creation, improve artists' creation efficiency and enhance artistic creation quality. However, we should clearly realize that research and application in this area is still being developed and perfected. In the future, Artificial Intelligence, Big Data, Cloud Computing, and so on are constantly being updated.

References

- [1] OPPENLAENDER J, LINDER R, SILVENNOINEN J. Prompting AI Art: An Investigation into the Creative Skill of Prompt Engineering. *International Journal of Human - Computer Interaction*, 2025, 41(16): 10207-10229.
- [2] YU C Y. Research on Emotion-Based Inspiration Mechanism in Art Creation by Generative AI. *Mathematics*, 2025, 13(16): 2597.
- [3] YANG J. Research on the Application of AI in Art Design and Digital Media Integration. *Arts Studies and Criticism*, 2025, 6(3): 546-548.
- [4] JOSHUA C. Painting in Gray: The Legal and Ethical Ambiguities of AI-Generated Art. *Journal of Information, Communication and Ethics in Society*, 2025, 23(3): 384-391.
- [5] YUAN H, KIM Y, ZHANG J, et al. Exploring Research Trends and Hotspots in AI and Art Integration: ROST Text Mining Analysis of China and South Korea. *Journal of Computational Methods in Sciences and Engineering*, 2025, 25(5): 3961-3972.
- [6] WENTAO L, HONG, MYEONG J. Research on the Application of Stable Diffusion-Based Generative AI Tools in Environmental Art Design Education. *Journal of Aussie-Sino Studies*, 2025, 11(2): 276-279.
- [7] PENG X, QIAN Y, BAO Q. Fostering Adolescent Engagement in Generative AI Art Therapy: A Dual SEM-ANN Analysis of Emotional. *Frontiers in Psychology*, 2025, 16: 1628471.
- [8] GRASSINI S. Computational Power and Subjective Quality of AI-Generated Outputs: The Case of Aesthetic Judgement and Positive Emotions in AI-Generated Art. *International Journal of Human - Computer Interaction*, 2025, 41(14): 9056-9065.
- [9] BENTIVEGNA F. Artificially Voiced Intelligences: Voice and the Myth of AI. *AI & SOCIETY*, 2025: 1-12.
- [10] ZMIGROD L, MOOROSI N, SULTANA F, et al. AI Hype, Crackling Northern Lights and More: Take it All in with These Holiday Reads. *Nature*, 2025, 643(8072): 628-630.
- [11] VILABOA B R, MONTERO P J F, TRILLO R J, et al. AI-Based Prediction of Visual Performance in Rhythmic Gymnasts Using Eye-Tracking Data and Decision Tree Models. *Photonics*, 2025, 12(7): 711.
- [12] ANSANI A, KOEHLER F, GIOMBINI L, et al. AI Performer Bias: Listeners Like Music Less When They Think it was Performed by an AI. *Empirical Studies of the Arts*, 2025, 43(2): 1137-1161.
- [13] CHAMBERS K. AI Threat: Equity to Lobby TUC to Protect Artists from 'Greedy' Tech Firms. *The Stage*, 2025, (21): 6.
- [14] HU Y. Creating Interactive AI Learning Environments: Integrating Interdisciplinary Approaches and Taoist Art Principles. *Interactive Learning Environments*, 2025, 33(6): 3889-3908.
- [15] SONG J, LIU S. Dark Personality Traits Are Associated with Academic Misconduct, Frustration, Negative Thinking, and Generative AI Use Habits: The Case of Sichuan Art Universities. *BMC Psychology*, 2025, 13(1): 633.