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A B S T R A C T

In response to the intelligent governance demands of complex scenarios such as smart cities
and smart water conservancy, this paper explores the coupled application of GIS digital twins
and AI reinforcement learning. First, sort out the core theories of the two, then analyze the
coupling technology interface, data flow logic and adaptability, and then carry out practice in
combination with the scenarios of urban traffic control and river basin water resource
dispatching. Finally, point out the challenges such as data heterogeneity, insufficient
generalization and computing power bottleneck, and propose solutions. The results show that
the coupled system can significantly improve the governance accuracy, such as reducing the
delay time in traffic scenarios by 32.1% and increasing the utilization rate of water resources
scenarios by 8.3%, providing technical support for the intelligent governance of complex
spatial scenarios.

1. Introduction

With the increasing demand for the integration of
"dynamic perception - precise simulation - intelligent
decision-making" in fields such as smart cities and smart
water conservancy, a single technology has become difficult
to meet the governance needs of complex scenarios. GIS
digital twin, relying on spatial information modeling
technology, can achieve three-dimensional visualization
mapping and real-time status feedback of the physical world,
but it has limitations at the dynamic optimization decision-
making level. AI reinforcement learning, through the
mechanism of "agent - environment interaction - reward
feedback", has the ability to independently explore the optimal
strategy[1], but it lacks the precise perception and modeling
foundation of spatial scenes. The coupling of the two can
achieve complementary advantages of "spatial modeling
capability" and "dynamic decision-making capability",
becoming a key path to solving the intelligent governance of
complex spatial scenarios. This paper systematically expounds
the core theories of GIS digital twin and AI reinforcement
learning, analyzes the coupling mechanism and adaptability of
the two, conducts application practice in combination with
actual scenarios, and finally sorts out the existing challenges
and proposes development paths, providing a reference for the
integrated application of technologies in related fields[2].

2.The core theoretical basis of GIS digital twin and AI
reinforcement learning

2.1.Key Technologies and Core Features of GIS Digital Twin

GIS digital twin takes geographic spatial information as the
core and integrates Internet of Things (IoT), 3D modeling,
real-time rendering and other technologies to build a virtual
mapping system that is spatio-temporal synchronized with the
physical world. Its key technologies include: First, multi-
source spatial data fusion technology, which collects data such
as terrain, features, and traffic flow through means like remote
sensing (RS), Global navigation satellite System (GNSS), and
unmanned aerial vehicles, and combines the spatial analysis
function of GIS to achieve standardized data processing; The
second is real-time interactive modeling technology, which
builds a three-dimensional dynamic model based on the BIM-
GIS integration framework and accesses the real-time data of
Internet of Things devices through the MQTT protocol to
ensure the spatiotemporal consistency between the virtual
scene and the physical world[3].

The core features of GIS digital twin are reflected in three
aspects: spatial correlation, which links multi-source data to a
unified spatial framework through a coordinate system to
achieve a deep binding of "data - location - scene"; Real-time
performance, relying on edge computing and 5G technology,
controls the data update delay within seconds, meeting the
monitoring requirements of dynamic scenarios. Predictability:
Based on historical and real-time data, predictive models are
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constructed to simulate and predict scenarios such as traffic
congestion and flood evolution[4].

2.2.Core Frameworks and Algorithm Types of AI
Reinforcement Learning

AI reinforcement learning centers on the "interactive
learning between the Agent and the Environment", and its
framework is constructed based on the Markov decision
Process (MDP), including four elements: state space (S),
action space (A), reward function (R), and strategy (π). The
agent perceives the environmental state (s∈ s), performs
specific actions (a ∈A), and the environment feeds back the
reward value (r ∈ R) based on the actions. The agent
iteratively optimizes the strategy π(a/s), ultimately achieving
the maximization of cumulative rewards[5].

According to the way strategies are updated, reinforcement
learning algorithms can be divided into two categories: The
first type is value function algorithms, which optimize
strategies by calculating the state value function V(s) or the
action value function Q(s,a). Typical algorithms include Q-
learning and deep Q-network (DQN), which are applicable to
discrete action space scenarios, such as the "red/green/yellow
light switching" decision in traffic signal control. Second,
policy gradient algorithms, directly on the strategy (a | s) to
update the parameters of PI, typical algorithms such as
proximalpolicyoptimization (PPO), depth of deterministic
strategy gradient (DDPG), new space scene, such as "water
continuous adjustment of river basin water resources
scheduling decisions. The differences in applicable scenarios
and computational complexity between the two algorithms
provide a basis for algorithm selection in GIS digital twin
scenarios[6].

2.3.Multi-source data Processing and Rendering Support
Technology for GIS Digital Twin

The high-fidelity mapping of GIS digital twins relies on the
collaboration of multi-source data processing and rendering
technologies. At the data conversion level, it is necessary to
achieve efficient and lossless conversion of heterogeneous
data such as BIM, oblique photography, and laser point clouds.
Through the graph mapping framework, semantic associations
between IFC entities and CityGML elements should be
established. Combined with the seven-parameter Boolean
model, centimeter-level registration of the local coordinate
system and the CGCS2000 global coordinate system should
be completed. The storage architecture adopts a hybrid mode:
relational databases (such as PostgreSQL) store structured
attribute data[7], spatio-temporal databases (such as MongoDB)
handle dynamic sensor data, and object storage (such as
MinIO) manage unstructured model files, forming a unified
data lake. The rendering process relies on engines such as
UE5 to provide cloud rendering services. It reduces terminal
configuration requirements through pixel stream technology
and dynamically adjusts model accuracy by combining
adaptive LOD technology. In city-level scene rendering, it can
reduce GPU load by 40%.

2.4.Data Preprocessing and Robustness Optimization
Techniques for AI Reinforcement Learning

Data quality directly determines the effectiveness of
reinforcement learning strategies, and it is necessary to
establish highly reliable datasets through multi-step
preprocessing. Outlier processing uses the Z-score method to
identify data points that deviate from the mean by three
standard deviations, or smooges the sensor timing noise
through Kalman filtering. In the unmanned aerial vehicle
navigation scenario, the observation error can be controlled
within 5%. Missing values are completed by linear
interpolation or a generative model based on historical data to
avoid state vector discontinuity. The feature engineering stage
needs to undergo standardization processing, converting
features such as terrain elevation and flow into distributions
with a mean of 0 and a standard deviation of 1. Meanwhile,
the core features are screened through the random forest
algorithm to reduce the interference of redundant data on the
strategy iteration, which can increase the convergence speed
of the DDPG algorithm by 30%.

2.5.Theoretical compatibility and technical connection logic
of the coupling between the two

Theoretically, the scene modeling capability of GIS digital
twins and the decision optimization capability of
reinforcement learning complement each other naturally.
Spatio-temporal scale adaptation is achieved through the
hierarchical fusion technology of digital twins: macro scenes
use LOD2-level simplified models to match global decisions,
while micro regions call LOD4-level fine models to support
local action optimization. The data interface adopts a
combined solution of OGC standard and custom SDK,
converting the spatial topology data of the twin model into the
state vector of the MDP framework. Among them, the
WebSocket protocol can achieve real-time data transmission
within 10-20ms. In the simulation verification stage, the flood
inundation and traffic flow simulation functions of the twin
platform provide a high-fidelity training environment for
reinforcement learning, shortening the strategy iteration cycle
of algorithms such as PPO to the minute level and improving
generalization by more than 15%.

3.Coupling Mechanism and Compatibility Analysis of
2GIS Digital Twin and AI Reinforcement Learning

3.1.Coupled technical interface and data flow logic

The coupling of GIS digital twins and AI reinforcement
learning needs to break through the interface barrier of
"spatial data - decision-making model" and build a
standardized data flow system. At the technical interface level,
it mainly includes three types of coupling methods (as shown
in Table 1) : The first is the API interface based on the OGC
(Open Geospatial Information Consortium) standard, such as
the OGCSensorThingsAPI, which can directly access the real-
time data of sensors in the GIS digital twin to achieve the
mapping of environmental states (such as traffic flow and
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water quality indicators) to the reinforcement learning state
space. The second is to customize the SDK interface. By
developing a dedicated data interaction module through
Python or C++, it supports the binding of 3D model
parameters (such as building height and road width) with the
action space of reinforcement learning, which is suitable for
high-precision scenarios. The third is the WebSocket real-time
communication interface, which realizes the real-time
feedback of reinforcement learning decision results (such as
signal timing schemes and scheduling instructions) to the GIS
digital twin through full-duplex communication, ensuring the
synchronization of virtual scenes and physical execution.

The data flow logic follows a closed loop of "perception -
modeling - decision-making - feedback" : In the first step, the
GIS digital twin collects spatial and attribute data of the
physical world through IoT devices. After data cleaning and
standardization, it is converted into state vectors recognizable
by reinforcement learning (such as the "intersection flow -
queue length - signal duration" vector). The second step is for
the reinforcement learning agent to perform actions based on
the state vector and generate decision-making schemes. The
third step is for the GIS digital twin to substitute the decision-
making plan into a virtual scene for simulation and deduction,
and calculate indicators such as "traffic efficiency
improvement rate" and "water resource utilization rate" as
reward values to feed back to the agent. The fourth step is that
the agent optimizes the strategy based on the reward value to
form an iterative loop[8].

3.2.Dimensions of Compatibility Evaluation for Coupling and
Empirical Analysis

The compatibility of GIS digital twins and AI
reinforcement learning needs to be evaluated from three
dimensions: spatio-temporal resolution, computational
efficiency, and scene complexity. In terms of spatio-temporal
resolution adaptation, the spatial resolution of GIS digital
twins (such as 1m/ pixel remote sensing images) needs to
match the decision granularity of reinforcement learning (such
as "500m road section" traffic control), and the temporal
resolution (such as 5-minute data update) needs to be
coordinated with the iteration cycle of reinforcement learning
(such as 10-minute strategy update) Avoid decision-making
lag or data redundancy caused by resolution mismatch.

In terms of computational efficiency adaptation, it is
necessary to balance the rendering efficiency of GIS digital
twins with the training efficiency of reinforcement learning.
Taking urban traffic scenarios as an example, the 3D
rendering frame rate of GIS digital twins needs to be ≥30fps
to ensure real-time performance, and the single strategy
training time of reinforcement learning needs to be ≤5 minutes
to meet the requirements of dynamic decision-making.
Through GPU acceleration technology (such as NVIDIAA100
graphics cards) and model lightweight processing (such as
pruning DQN networks), the overall latency of the coupled
system can be controlled within 10 seconds, meeting the
requirements of most scenarios.

Table 1 Performance Comparison of Typical Coupling Interfaces between
GIS Digital Twin and AI reinforcement Learning

Coupling
interface
type

data
transmission
delay (ms)

Spatial data
compatibility

(%)

development
cost (ten

thousand yuan)

real-time
satisfaction

(%)
OGCAPI 80-120 95 5-8 88
Custom
SDK 30-50 98 12-15 96

WebSocket 10-20 92 6-9 99

4.A typical coupling application scenario practice of 3GIS
digital twin and AI reinforcement learning

4.1.Intelligent Urban Traffic Control Scenarios

In urban traffic control, traditional signal timing relies on
fixed schemes and is difficult to cope with dynamic scenarios
such as tidal traffic flow. The coupling of GIS digital twin and
reinforcement learning can achieve a closed-loop management
of "real-time perception - dynamic optimization" : Firstly, a
three-dimensional twin model of the urban road network is
constructed based on GIS, and real-time traffic data from
intersection cameras and coil detectors are connected to
accurately present the spatial distribution of "road section
traffic - intersection queuing - vehicle speed". Secondly, the
state space of the reinforcement learning agent is defined as
"flow in all directions within a 500m range, queue length, and
current signal duration", the action space is defined as "signal
duration increase or decrease by 5/10/15 seconds", and the
reward function is set as "intersection traffic efficiency
improvement rate - delay time reduction rate". Finally, the
strategy is iteratively optimized through the PPO algorithm to
generate a dynamic signal timing scheme, which is then
simulated and verified in the GIS twin scene and sent to the
physical signal machine.

Taking a core business district in Hangzhou (including 12
intersections) as an example, after adopting the coupling
scheme, the traffic control performance has been significantly
improved (as shown in Table 2). Compared with the
traditional scheme, the average delay time during peak hours
has been reduced by 32.1%, and the congestion rate at
intersections has decreased by 28.5%, proving that the
coupled system can effectively improve the accuracy of traffic
governance[9].

4.2.Scenarios for Optimal Dispatching of Water Resources in
River Basins

In the dispatching of water resources in river basins, it is
necessary to balance the multi-objective demands of
agricultural irrigation, industrial water use and ecological
water replenishment. The coupling of GIS digital twin and
reinforcement learning can achieve "supply and demand
balance - dynamic scheduling" : Firstly, a hydrological twin
model of the basin is constructed based on GIS, integrating
data such as precipitation, evaporation, reservoir water level,
and water user demand to simulate the evolution process of
water flow and the distribution of water resources. Secondly,
the state space of the reinforcement learning agent is defined
as "reservoir water level, water demand of each water user,
and predicted rainfall value", the action space is defined as



Applied Artificial Intelligence Research4

"reservoir water release volume (0-1 million m³ / day)", and
the reward function is set as "water resource utilization rate -
agricultural water shortage rate - ecological water
replenishment guarantee rate". Finally, the scheduling strategy
is optimized through the DDPG algorithm, and the scheduling
effects under different water inflow scenarios are simulated in
the GIS twin scene to ensure the robustness of the strategy.

Taking the middle and lower reaches of the Han River, a
tributary of the Yangtze River (involving three large
reservoirs and 2 million mu of farmland), as an example, the
dispatching effect of the coupling scheme is superior to that of
the traditional scheme (as shown in Table 3). The utilization
rate of water resources has increased by 8.3%, the water
shortage rate in agriculture has dropped by 11.2%, and the
guarantee rate of ecological water replenishment has risen by
9.5%, providing technical support for the sustainable
utilization of water resources in the basin[10].

4.3.Smart Municipal Pipeline Leakage Control Scenarios

Due to problems such as aging and pressure fluctuations,
the municipal water supply network has the pain points of
high leakage rate and difficult location. Traditional manual
inspection is inefficient (leakage location takes more than 24
hours) and costly. The coupling of GIS digital twin and
reinforcement learning can achieve full-process control of
"real-time monitoring - dynamic pressure regulation - precise
positioning". Firstly, a three-dimensional twin model of the
pipe network is constructed based on GIS, and the EPANET
hydraulic simulation model is integrated. The pressure sensor
of the pipe section (with a sampling frequency of once per
minute), the flow monitor and the DMA (independent
metering area) leakage warning data are connected to achieve
the visual mapping of the pipe network topology, hydraulic
parameters and leakage status. Secondly, the state space of the
reinforcement learning agent is defined as "real-time pressure
and flow deviation values of the pipe section, DMA leakage
warning level", the action space as "regional pressure
regulating valve opening degree (0-100% continuous
adjustment)", and the reward function is set as "reduction
amplitude of leakage rate - energy conservation rate of the
pipeline network - pressure compliance rate". The DDPG
algorithm (adapted to the continuous action space) is selected
to optimize the pressure regulation strategy. Finally, the
hydraulic response under different pressure regulation
schemes is simulated through GIS twin scenarios, and the
optimal strategy is issued to the on-site execution unit. At the
same time, the hydraulic characteristics of the leakage point
are combined for inversion and positioning[11].

Taking the water supply network in the old urban area of a
provincial capital city (with a pipe length of 120 kilometers
and 28 DMA zones) as an example, the coupling scheme has
achieved remarkable results (as shown in Table 4). Compared
with the traditional manual inspection scheme, the leakage
rate has decreased from 18.2% to 9.7%, the time for leakage
location has been shortened to 1.5 hours, and the energy
consumption of pipeline network operation has been reduced
by 14.3%, verifying the technical value of the coupling system
in the refined management and control of municipal pipeline
networks.

4.4.Monitoring Scenarios for Smart Wetland Ecological
Restoration

Wetland ecosystems need to dynamically regulate key
factors such as water level and water quality due to
hydrological fluctuations and human activity disturbances.
Traditional monitoring relies on regular sampling, which has
problems of data lag and rough regulation. The coupling of
GIS digital twin and reinforcement learning can achieve a
closed loop of "ecological state perception - optimization of
regulation schemes - simulation of restoration effects". Firstly,
a three-dimensional twin model of the wetland is constructed
based on GIS, integrating Sentinel-2 remote sensing images
(with a spatial resolution of 10m and an update cycle of 5
days), IoT sensor data (water level[12], COD, ammonia
nitrogen, vegetation coverage), and embedding the InVEST
model to simulate ecological service values such as carbon
sinks and water quality purification. Secondly, the state space
of the reinforcement learning agent is defined as "water level
in the core area of the wetland, key water quality indicators,
vegetation coverage rate, and meteorological prediction
(precipitation/evaporation)", and the action space as "water
replenishment flow (0-50,000 m ³ / day), ecological
dispatching duration (2-8 hours/time)". The reward function is
set as "ecological service value enhancement rate - water
replenishment cost reduction rate - vegetation survival rate",
and the PPO algorithm is adopted to balance multi-objective
regulation. Finally, the long-term ecological responses of
different regulation schemes are deduced through GIS twin
scenarios to ensure that the strategies have both short-term
restoration effects and long-term stability.

Taking a national-level wetland nature reserve (with a core
area of 80km²) as an example, the optimization effect of the
coupling scheme is obvious (as shown in Table 5). Compared
with the traditional regular water replenishment scheme, the
wetland vegetation coverage rate has increased from 62.3% to
78.5%, the COD compliance rate of water quality has risen
from 75.1% to 92.4%, and the ecological service value per
unit area has increased by 23.6%, providing precise technical
support for wetland ecological restoration.

4.5.Urban Smart Emergency Evacuation Control Scenarios

In the evacuation of urban sudden disasters (such as fires
and earthquakes), traditional solutions rely on static path
planning, which is difficult to cope with dynamic changes
such as congestion of people flow and blockage of passages,
and is prone to lead to low evacuation efficiency and high
secondary risks. The coupling of GIS digital twin and
reinforcement learning can achieve real-time response of
"disaster situation awareness - dynamic path optimization -
evacuation instruction issuance". Firstly, a twin model of
urban buildings and road networks is constructed based on
GIS, and real-time human flow data (camera AI counting,
mobile phone signaling positioning) and disaster monitoring
equipment data (fire smoke detectors, seismic intensity meters)
are connected to simulate the disaster diffusion path and the
bottleneck of human flow congestion. Secondly, the state
space of the reinforcement learning agent is defined as "crowd
density in the evacuation area, exit capacity, path congestion
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degree, and disaster impact range", and the action space as
"evacuation path allocation (discrete selection of 3-5
alternative paths), exit guidance instructions (open/close/flow
limit)". The reward function is set as "total evacuation time
reduction rate - personnel casualty risk reduction rate -
congestion point reduction rate", and the DQN algorithm
(adapted to discrete action space) is selected to optimize the
path strategy[13]. Finally, the evacuation process under
different disaster scenarios is simulated through GIS twin
scenes, and the optimal path and guiding instructions are
synchronized to the emergency command platform and public
navigation terminals.

Taking the fire emergency drill of a commercial complex
in a certain city (with a construction area of 250,000 square
meters and 12 evacuation exits) as an example, the coupling
plan performed outstandingly (as shown in Table 6).
Compared with the traditional static path scheme, the total
evacuation time has been shortened from 28 minutes to 16
minutes, the number of evacuation congestion points has
decreased from 8 to 2, and the safe evacuation rate of
personnel has increased from 89.5% to 99.2%, significantly
enhancing the safety and efficiency of emergency
evacuation[14].

4.6.Precision Irrigation Scenarios in Smart Agriculture
Irrigation Districts

Due to the untimely monitoring of soil moisture and the
reliance on experience in irrigation plans in agricultural
irrigation areas, there are problems such as water waste (with
an average water consumption of over 500 cubic meters per
mu) and fluctuations in crop yields. The coupling of GIS
digital twin and reinforcement learning can achieve "precise
perception of water demand - optimization of irrigation
schemes - improvement of water use efficiency" : Firstly, a
three-dimensional twin model of the irrigation area is
constructed based on GIS, integrating GNSS farmland
positioning data, soil moisture sensors (with sampling depths
of 20/40/60cm), and meteorological station data (precipitation,
evaporation, and sunshine), and embedding the SWAT model
to simulate the water movement in farmland and the water
requirement of crops. Secondly, the state space of the
reinforcement learning agent is defined as "soil relative
humidity (20/40/60cm), water requirement during the growth
period of crops, and meteorological prediction (precipitation
in the next 3 days)", and the action space is defined as "single
irrigation volume (0-80m ³ / mu), irrigation duration (0.5-2
hours)". The reward function is set as "water use efficiency -
crop yield guarantee rate - reduction rate of water
consumption per mu", and the DDPG algorithm is selected to
adapt to the adjustment of continuous irrigation parameters.
Finally, the soil moisture changes and crop growth responses
under different irrigation schemes were simulated through
GIS twin scenarios, and the optimal scheme was issued to the
intelligent irrigation valve group.

Taking a certain plain irrigation area (with an irrigated area
of 50,000 mu and wheat as the main crop) as an example, the
coupling scheme has achieved remarkable results (as shown in
Table 7). Compared with the traditional empirical irrigation
scheme, the water use efficiency has increased from

0.85kg/m3 to 1.23kg/m3, the average water consumption per
mu has decreased from 520m3 to 380m3, and the average yield
of wheat per mu has increased by 11.5%, providing technical
support for agricultural water conservation and food security.

Table 2 Performance Comparison of different technical Solutions in the
scenario of intelligent urban traffic control

Technical
solution

Traffic
efficiency

improvement
rate (%)

Average
delay time
during peak
hours (min)

Intersection
congestion
rate (%)

Energy
consumption
reduction
rate (%)

Traditional
traffic signal
control

5.2 8.6 35.8 3.1

GIS digital
twin single
technology
control

12.8 6.3 26.4 7.5

Gis-
reinforcement
Learning
Coupled

Management

25.3 5.8 7.3 12.4

Table 3 Comparison of the effects of different decision-making schemes in
the scenario of optimal dispatching of water resources in river basins

Decision-
making plan

Water
resources
utilization
rate (%)

Agricultural
water

shortage
rate (%)

Ecological
water

replenishment
guarantee rate

(%)

Time
consumption

for
dispatching
decision-

making (min)
Traditional
experience-

based
scheduling

78.5 18.6 72.3 30-45

Digital twin
simulation
scheduling

83.2 13.5 81.2 15-20

Gis-
reinforcement
Learning
Coupled
scheduling

91.5 7.3 90.7 5-8

Table 4 Performance Comparison of Smart Municipal Pipeline Leakage
Control Scenarios

Decision-
making plan

Technical
solution
leakage
rate (%)

Leakage
location
time (h)

Pipeline energy
consumption
reduction rate

(%)

Pressure
compliance
rate (%)

Traditional
manual

inspection
18.2 24.5 3.2 82.1

GIS Digital
Twin Single
Technology

13.5 8.3 7.8 89.5

Gis-
reinforcement
Learning
Coupled
Control

9.7 1.5 14.3 96.8

Table 5 Performance Comparison of Smart Wetland Ecological Restoration
Monitoring Scenarios

Decision-
making plan

Technical
solution

Vegetation
coverage
rate (%)

COD
compliance
rate (%)

Ecological
service value
per unit area

(ten
thousand
yuan /km²)

Water
Replenishment

cost (ten
thousand
yuan/year)

Traditional
regular
hydration

62.3 75.1 128 215

GIS Digital
Twin Single
Technology

69.8 83.5 152 198

Gis-
reinforcement
Learning

78.5 92.4 158 172
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Coupled
Management
Table 6 Performance Comparison of Smart Emergency Evacuation Control

Scenarios in Cities

Decision-
making plan

Total
evacuation
time of
technical
solution
(min)

Number of
evacuation
congestion
points
(units)

Personnel
safe

evacuation
rate (%)

Command
response
time (min)

Traditional
static path 28.0 8 89.5 12.5

GIS Digital
Twin Single
Technology

20.5 5 94.3 6.8

Gis-
reinforcement
Learning
Coupled

Management

16.0 2 99.2 2.3

Table 7 Performance Comparison of Precision Irrigation Scenarios in Smart
Agriculture Irrigation Districts

Decision-
making plan

Technical
solution
Water use
efficiency
(kg/m³)

Average
water

consumption
per mu (m³)

Average
yield of
wheat per
mu (kg)

Irrigation
compliance
rate (%)

Traditional
experience
irrigation

0.85 520 482 68.3

GIS Digital
Twin Single
Technology

1.02 450 510 82.5

Gis-
reinforcement
Learning
Coupled

Management

1.23 380 537 95.7

5.The existing challenges and future development paths of
the coupled application of 4GIS digital Twin and AI
reinforcement learning

5.1.Existing Core Challenges of Coupled Applications

At present, the coupling of the two faces three challenges:
① The problem of multi-source data heterogeneity. The data
sources of GIS digital twins include remote sensing images,
IoT sensors, government data, etc. The data formats (such as
shp, json, csv) and precision differences are large, which
increases the difficulty of feature extraction in the
reinforcement learning state space and easily leads to the
problem of "data noise interfering with decision-making". ②
In complex scenarios, the generalization ability of
reinforcement learning is insufficient. When the physical
scene undergoes sudden changes (such as sudden traffic
incidents, extreme precipitation), the pre-trained model of
reinforcement learning is difficult to quickly adapt to the new
scene, resulting in a decline in decision-making accuracy. ②
The computing power consumption of the coupled system is
too high. The 3D rendering of GIS digital twins and the model
training of reinforcement learning both require a large amount
of computing power support. In large scenarios at the county
and city levels, a single server is difficult to meet the real-time
requirements, and there is a problem of "computing power
bottleneck restricting application scale"[15].

5.2.Future Development Paths of Coupled Applications

To address the above challenges, breakthroughs can be
made in three aspects in the future: ① Build a multi-source
data fusion middle platform, adopt federated learning
technology to achieve "data remains stationary while the
model moves", and while protecting data privacy, unify the
data format and precision through feature alignment
algorithms (such as attention mechanisms) to provide high-
quality state input for reinforcement learning; Second, multi-
agent reinforcement learning (MARL) is introduced to split
complex scenarios into multiple sub-scenarios (such as
"regional road network - single intersection" in urban traffic),
with independent agents deployed in each sub-scenario.
Through collaborative communication among agents, the
generalization of the model is enhanced to cope with sudden
changes in scenarios. Third, integrate edge computing and
cloud computing architectures. Deploy lightweight tasks such
as real-time data processing of GIS digital twins and strategy
reasoning of reinforcement learning at edge nodes (such as
intersection edge servers), and deploy computationally
intensive tasks such as model training and large-scale scene
rendering in the cloud. Through "edge-cloud" collaboration,
reduce computing power consumption and expand application
scale.

6.Conclusion

This paper, by sorting out the core theories of GIS digital
twin and AI reinforcement learning, reveals the coupling logic
of "spatial modeling - dynamic decision-making" between the
two. It verifies the feasibility and advantages of the coupled
application in combination with two typical scenarios of urban
traffic and river basin water resources, and points out the
existing challenges such as data heterogeneity, insufficient
generalization, and computing power bottlenecks. Research
shows that the coupling of GIS digital twins and AI
reinforcement learning can significantly enhance the
intelligent governance capabilities of complex spatial
scenarios, providing new technical paths for fields such as
smart cities and smart water conservancy. In the future, with
the development of multi-source data fusion technology,
multi-agent reinforcement learning, and edge-cloud
collaborative architecture, the coupled application of the two
will move towards "larger scale, higher precision, and lower
cost", providing strong support for the realization of refined
governance in the construction of "Digital China". Subsequent
research can further explore the construction of a standardized
system for coupled systems, promoting the deep integration of
technology implementation and industrial application.
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