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A B S T R A C T

DCT-based denoising often relies on fixed rules such as thresholding or retaining only low-
frequency components, which easily blur textures or leave residual noise on natural images.
To address this limitation, we develop a learnable denoising model that keeps the structure of
the DCT domain while allowing the network to adaptively regulate each frequency band. With
differentiable DCT/IDCT layers, the method applies trainable masks to high- and low-
frequency coefficients, and a lightweight global attention block at reduced resolution provides
broader contextual cues at low cost. An image-level residual path further aids reconstruction.
Under a compact setup, the model improves PSNR and SSIM from 11.89 dB and 0.2915 (pure
DCT) to 25.05 dB and 0.945, showing that replacing fixed heuristics with learnable frequency
modulation leads to substantially better restoration quality.

1. Introduction

DCT is a classic tool in compression and filtering. For
natural image denoising, fixed thresholds or a simple keep
low frequency policy often remove noise but also blur
textures. Per block Wiener filters can keep details, but may
create artifacts. Deep models do well on complex noise, but
they are harder to read from a physical point of view.

The core idea of our approach is straightforward. Rather
than discarding the DCT prior, we aim to integrate it more
effectively. Let the data learn which frequency bands to keep
or suppress, and how to fuse them. We make orthogonal DCT
and IDCT into differentiable layers, learn masks for high and
low sub bands, add a low resolution attention branch for
cheap global context, and keep an image level skip. This
retains the structural advantages of DCT while enabling end-
to-end trainability.

2.Materials and Methods

2.1.Related Work

2.1.1.Classical denoising: non-locality, self-similarity,
sparsity

Non-local Means (NLM) uses all similar patches across
the image to average and preserve detail[1];BM3D:block
matching + 3D transform-domain collaborative filtering is a
milestone for Gaussian noise[2];Sparse/low-rank priors also
matter a lot: K-SVD learns a dictionary with sparse

coding[3];EPLL uses a GMM prior over patches to restore full
images[4];WNNM models grouped patches with weighted
nuclear norms[5].

2.1.2.Learning-based denoising: CNN to Transformer

In learning based denoising, DnCNN first systematically
used residual learning for end to end denoising by regressing
noise as the residual and became a strong baseline[6]; Then
FFDNet introduced a noise level map and downsampled sub
images to balance speed, flexibility, and accuracy, and to
support variable noise strength[7]; In the Transformer era,
Restormer applied content adaptive channel attention and
efficient feed forward networks to high resolution restoration
and achieved SOTA on multiple tasks[8]; Uformer proposed a
U shaped structure with locally enhanced window attention to
keep global dependencies while controlling computational
complexity[9].

2.1.3.Frequency or wavelet with differentiable transforms

In the fusion of prior and network, MWCNN embeds the
wavelet transform into a U Net framework to naturally
combine downsampling and a large receptive field, balancing
efficiency and accuracy, and it is widely used in denoising,
super resolution, and compression artifact removal[10];
Compared with wavelets, DCT has long been used in
compression and filtering due to its energy compaction. In
recent years there is a stronger trend of combining frequency
domain and deep networks, FcaNet points out theoretically
that global average pooling can be regarded as a low
frequency special case of DCT and proposes multi band
channel attention to improve channel compression and
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attention modeling using DCT frequency components[11]; This
provides a principled foundation and practical methodology
for selectively using DCT bands within learning frameworks.

2.2.Overall Framework

Because DCT has good prior interpretability for energy
compaction and band separation[12], as shown in Fig 1, DCT
and IDCT need no training and are cheap to compute, but on
complex natural images they easily cause detail loss and
blocking artifacts. When texture and noise bands overlap,
fixed rules struggle to balance denoising and texture
fidelity[13].

Fig 1: Block-based DCT filtering pipeline
Based on the above observations, we propose a DCT-based

learnable frequency-gated denoising network, termed DCT-
GatingNet, whose architecture is shown in Fig 2. The network
embeds differentiable orthogonal DCT/IDCT layers into an
end-to-end learning framework. Concretely, the input image

is first fed into a shared shallow network, i.e., the stem, to
extract basic features. These features are then sent into two
parallel branches corresponding to high- and low-frequency
components. Each branch applies a DCT transform, and the
resulting coefficients are multiplied pointwise with a
learnable gating mask, implementing adaptive frequency-
domain filtering. The processed coefficients are transformed
back to the pixel domain via IDCT, and the two branches are
summed to form the fused representation.

To model global context under limited GPU memory, we
further introduce a low-resolution attention module, which
can be instantiated as either standard multi-head self-attention
(MSA) or AgentAttention. The fused feature map is first
downsampled with a scale factor of 4 or 8, global attention is
computed in this low-resolution space, and the result is then
upsampled and injected back into the main path through a
residual connection. In this way we capture long-range
dependencies with only a small extra inference cost. On top of
this, we adopt an image-level global residual connection, i.e.,
the network learns the “ detail + noise residual” to be
corrected rather than the full clean image. This design
improves training stability and the fidelity of fine details, and
lets the model focus on learning the residual that needs
compensation.

Fig 2. Overall architecture of DCT-GatingNet
2.2.1.Classical denoising: non-locality, self-similarity,
sparsity

A core consideration in our design is to avoid parameter
redundancy and unstable interfaces. If the high- and low-
frequency branches each adopt an independent shallow
convolutional stem (a dual-stem design), computation is
duplicated and the statistical mismatch between the two initial
feature representations can also hurt the stability of the
subsequent gating learning. Therefore, we adopt a shared-
stem scheme: the input is first mapped by a unified shallow
projection to obtain a common feature representation, which
is then reused by the two branches, ensuring consistency and
efficiency at the sourcee.

Let the input image be x∈RH×W×3,We denote the shared
stem as Sθ:

f=Sθ(x),f∈ℝH×W×C (1)
After that, the high- and low-frequency branches perform

their own subsequent processing on this shared feature. It is
worth emphasizing that the role of the shared stem is only to

map the input from RGB space to a unified intermediate
representation; it does not itself distinguish between high- and
low-frequency paths. All operations related to frequency
characteristics are carried out independently in the
downstream branches.

In a traditional dual-stem design, if each stem consists of
convolution kernels of size with channels, the number of
parameters and dominant FLOPs are approximately:

Paramstwo=2∙(K2∙3∙C),FLOPstwo∝2∙(K2∙3∙C∙H∙W) (2)
With the shared stem, both quantities are roughly halved:
Paramsshared=K2∙3∙C,FLOPsshared∝K2∙3∙C∙H∙W (3)

In short, using a shared stem cuts both measures roughly in
half. Without changing the structure of the subsequent
frequency-domain transforms and attention modules, this
effectively reduces redundant computation and provides a
unified feature interface, which in turn significantly improves
the learning stability of the frequency gating module and the
early convergence speed of the model.

In implementation, we use a Conv3×3–Norm–GELU block
as Sθ, as shown in Fig 3. This module preserves the same
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spatial resolution as the input (no downsampling), and the
default number of output channels C is set to 64. The
normalization layer (Norm) can be flexibly chosen as batch
normalization (BN) or group normalization (GN). The rest of
the network remains unchanged; we only need to replace the
two original independent stems (Sθh,Sθl)with a single shared
parameter set Sθto realize the shared-stem design.

Fig 3: Shared stem module

2.2.2.Learnable High/Low Mask on DCT

Classical DCT-based denoising methods usually rely on
hand-crafted and fixed band-partition rules, such as keeping
only low frequencies or applying a uniform threshold, which
limits their adaptability to diverse image content and noise
levels. To address this, we introduce a learnable frequency-
domain gating mechanism in the orthogonal DCT space, as
illustrated in Figure. 4. The DCT coefficients of the shared
feature are softly selected at each frequency point by this
mechanism, and the high- and low-frequency information is
then distributed to the two processing branches in a data-
driven manner. Compared with fixed rules, this design allows

the network to automatically learn an adaptive band allocation
strategy during training, while the gating operation is fully
decoupled from the subsequent processing modules, which
improves both flexibility and interpretability.

Let the output of the shared stem be f∈ℝH×W×C , and
denote the 2D DCT and IDCT by D(⋅ ) and D−1(⋅ ) ,
respectively. The frequency-domain representation is given
by.

F=D(f)∈ℝH×W×C (4)
For the high- and low-frequency branches, we introduce

learnable masks Mh,Ml∈[0,1]H×W(broadcast along channels),
which are obtained from trainable logits Wh,Wl∈ℝH×Wvia a
temperature-controlled sigmoid:

Mh=σ (
Wh
τ
),Ml=σ (

Wl
τ
),τ>0 (5)

The high- and low-frequency branches then perform
pointwise frequency gating with these masks and are each
mapped back to the spatial domain:

h=D−1 (Mh⊙F),l=D−1 (Ml⊙F),z=h+l (6)
Unlike a fixed k×klow-pass filter or a fixed-threshold

scheme, (Mh,Ml)learn during training, for every frequency
component, the relative strength of preservation, suppression,
and redistribution, allowing a single network to
simultaneously handle both fine textures and smooth regions.

Fig 4: Learnable High/Low Mask on DCT
2.2.3.MSA / AgentAttention

Standard full-resolution self-attention has very high
computational and memory complexity in the spatial domain,
which makes it difficult to train stably together with the
frequency-domain modules under limited GPU memory.
Therefore, we adopt a low-resolution attention mechanism to
introduce global dependencies with controllable cost, as
illustrated in the Figure 5: the intermediate feature
representation is first downsampled, then multi-head self-
attention (MSA) or AgentAttention is applied in the low-
resolution space, and finally the result is upsampled and
injected back into the main network through a residual
connection. This design efficiently supplements the model
with long-range contextual information while keeping the
computational burden within an acceptable range.

Let the feature obtained after the shared stem and
frequency gating be z∈ℝH×W×C . We define a downsampling
operator Poold:ℝH×W×C → ℝ

H
d
×W
d
×C average pooling with both

stride and kernel size equal to d ), an upsampling operator
Upd(bilinear interpolation), and an attention module Attn(⋅ ),
which can be instantiated as standard MSA or AgentAttention.
Then

z↓=Poold(z),g=Attn(z↓),z'=z+Upd(g). (7)
where the residual connection preserves the original spatial

information, and Upd maps the global context back to the
original resolution. If Attn is instantiated as standard MSA,
then

MSA(X)=Concat(h1,…,hNh) Wo,hi=softmax (
QiKi

⊤

dk
)Vi (8)

where X∈ℝN×C and N= H
d
⋅

W
d
. AgentAttention interacts a

small number of “agent tokens” with dense tokens, which can
further reduce the quadratic complexity; in our
implementation it is fully compatible with the implementation
of MSA and shares the same interface.

For memory consumption, let the downsampling ratio be
dand the number of low-resolution tokens be N=(HW)/d2. The
dominant attention complexity changes from O(N2C)to

O ( (HW)
2

d4
 C). (9)

and the memory cost scales approximately with N2as well.
Empirically, for 256×256 inputs with C=64 , d=4 provides
finer global modeling and yields a slight performance gain
compared with d=8, at the cost of increased memory usage.

Fig 5: MSA / AgentAttention

2.2.4.Image-Level Skip

Finally, we adopt an image-level residual reconstruction
scheme, as illustrated in the Figure 6. Based on the
intermediate representation z∈ℝH×W×C obtained after
frequency gating and low-resolution attention, a lightweight
reconstruction head Recon ⋅ predicts a residual
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Δ=Recon z , which is directly added to the input
imagex∈ℝH×W×3.

Fig 6: Image-level Skip

3.Results and Discussion

The experiments run on Ubuntu 22.04, using PyTorch 2.2.0.
We use Adam as the optimizer. The initial learning rate is 1e-
4, and a cosine annealing schedule reduces it to 1e-5 over 60
epochs. To keep things simple and reproducible, data
augmentation is limited to basic random flips and random
crops.

We use a self-built dataset called toy_datasets. It contains
1000 natural images. We split it into training and validation
sets by a fixed ratio. During training we add Gaussian noise
with sigma 25 on the fly for supervision, and the validation set
uses the same noise level.

3.1.Metrics

To objectively measure denoising at sigma 25, we use Peak
Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM)
as the main metrics. Both are computed on RGB images
normalized to the range 0 to 1, first per image and then
averaged over the dataset.

1) PSNR
Given a reference clean image Iand a restored image I�, the

mean squared error (MSE) is defined in :
MSE I,I� = 1

N p=1
N Ip−Ip�

2
� (11)

Here N is the product of the number of pixels and the
number of channels, so for RGB we count all three channels
together. Since pixels are already normalized to the range
[0,1], the dynamic range is L=1. PSNR is then defined in :

PSNR I,I� =10 log10
L2

MSE I,I�
=−10 log10 MSE I,I� (12)

For a dataset Dwith Mimages, we compute PSNR for each
image and then take the arithmetic mean, as in:

PSNR= 1
M i=1

M PSNR� I i ,I� i (13)

PSNR is reported in dB, and a larger value means less
distortion. With the combination of differentiable orthogonal
DCT and IDCT, learnable frequency gating in the DCT
domain, low resolution attention, and the global residual
design, our method can suppress noise while keeping high
frequency details, so the PSNR becomes higher.
2) SSIM
SSIM measures the similarity of two images from three

aspects: luminance, contrast, and structure. For each window
(or the whole image), the statistics are the means μI and μI� ,
the variances σI2and σI�

2, and the covariance σII�.

SSIM is defined as:
SSIM I,I� = (2μIμI�+C1)(2σII�+C2)

(μI
2+μI�

2+C1)(σI
2+σI�

2+C2)
(14)

The stability constants C1 and C2 are defined as
C1=(k1L)2,C2=(k2L)2，where we usually set k1=0.01,k2=0.03
and L=1 as the pixel dynamic range. In practice, SSIM is
computed on local regions with a Gaussian window and then
averaged to get the SSIM of the whole image. In this work we
also report SSIM per image and then take the arithmetic mean:

SSIM= 1
M i=1

M SSIM� ! I i ,I i� (15)
SSIM focuses more on consistency of structure and

contrast. In our method, the learnable frequency gating adapts
to keep the bands that are most sensitive to structure, for
example the mid and high frequencies where textures live, and
the global residual helps avoid over smoothing. As a result,
we keep PSNR while raising SSIM.

3.2.Main Results

From Table 1, under the same training and inference
settings, our DCT-based learnable frequency gating model
outperforms both traditional DCT methods and other learning
baselines on all main metrics. In detail, the method reaches
25.05 dB PSNR and 0.945 SSIM. Compared with the pure
CNN baseline without DCT, the gains are +0.12 dB and
+0.002. Compared with the version without attention, the
gains are +0.02 dB and +0.001. Most notably, against the pure
DCT baseline the improvements reach +13.16 dB and +0.653.

These results make it clear that while keeping the sparsity
and interpretability of the DCT prior, adding learnable high
and low frequency gating and low resolution multi head
attention improves the model’s ability to tell noise from real
image details. The method delivers steady gains on objective
metrics. In high noise and complex texture scenes, the
recovery of high frequency details is more complete. This
supports that the mix of learnable frequency selection and
global residual fusion is both effective and has good
generalization.

Table 1 Main results

Method AVG PSNR (dB) AVG SSIM

DCT 11.8912 0.2915

DCT-Block-LP 5.3090 0.0146

DCT-Block-Wiener 5.6218 0.0266

CNN 24.93 0.943
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Method AVG PSNR (dB) AVG SSIM

No Attention(attn=none) 24.93 0.943

MSA(ds=8) 24.89 0.943

Ours + residual(attn=none) 25.03 0.944

Ours + residual(MSA ds=8) 25.02 0.944

Ours + residual(MSA ds=4) 25.05 0.945

3.3.Ablation Study

To evaluate how each submodule contributes to the model,
we run an ablation (Table 2) with a controlled variables setup.
Each run disables only one target module, and everything else
stays the same as the main model. The main model reaches
25.05 dB/0.945. The results and brief notes are:

1) When the global residual connection is removed,
performance drops to 24.95 dB/0.944. Without the y = x +
recon(z) path, the network has to fit the full clean image
instead of the simpler noise residual. This makes learning
harder and slightly hurts edges and fine details. The result
shows the global residual gives a stable gain of about +0.1 dB.

2)When the low resolution attention is turned off,
performance goes to 24.93 dB/0.944. Without long range
dependency modeling, the reconstruction of large structures
and texture consistency gets weaker. Even with a low
compute setting like ds = 4, global context still brings a clear
benefit.

3) When the gating is disabled, performance falls to 24.89
dB/0.944. This is the single biggest drop. Replacing the data
driven adaptive gate with a fixed hand crafted mask prevents
the model from adjusting band selection to image content.
This confirms the learnable gating is central in this design.

4) When the shared stem is removed, performance is 25.00
dB/0.944. Giving the high and low frequency branches
separate shallow extractors adds parameter and compute
redundancy, and the mismatch in feature statistics slightly
disturbs later fusion. A shared stem offers a unified feature
interface with better efficiency.

Table 2 Ablation results

4.Conclusions

This work presents a denoising model that merges the
structure of the DCT domain with adaptable, data-driven
components. By allowing the network to adjust the

contribution of different frequency bands through learnable
gating, the model can better distinguish informative high-
frequency details from noise. The low-resolution attention
branch offers additional global context without imposing a
large computational burden, and the image-level residual
design helps stabilize optimization and enhances the
reconstruction of fine structures.

Across quantitative evaluations, the approach consistently
performs better than both fixed-rule DCT filtering and
comparable lightweight CNN baselines. The analysis further
indicates that the gating temperature and data scale can
influence the behavior of frequency selection, especially in
images dominated by repetitive textures or extremely noisy
regions. Although the attention module increases memory
usage slightly, the overall system remains efficient, and the
DCT components themselves are computationally inexpensive.

Overall, enabling learnable frequency selection within a
DCT-based framework provides a flexible and interpretable
solution for image denoising. Future work will explore
extending this approach to real-world noisy datasets and
examining its adaptability to related restoration tasks such as
deblurring and super-resolution.
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Method PSNR (dB) SSIM

Disable global residual connection 24.95 0.944

Disable MSA 24.93 0.944

Disable gating 24.89 0.944

Disable shared stem 25.00 0.944

Ours 25.05 0.945


