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ABSTRACT

This retrospective study on 7232 male seafarers(June 2022 -- Nov 2023), explored the
occurrence of fatty liver disease and gallstones and pointed out its related risk elements,
moreover examined the worth of using DL-based radiomics in intelligent examination and
medical diagnosis of the said hepatobiliary diseases. Clinical data (BMI, blood lipids) and
abdominal ultrasound images were analyzed via traditional statistical methods (chi-squared
test, correlation analysis, t-test). A DL framework integrating U-Net segmentation and
MobileNetV2 classification was developed to automate region-of-interest (ROI) extraction,
extract high-dimensional radiomic features, and fuse clinical/radiomic data for dual-disease
prediction. Results showed BMI was linearly positively correlated with hyperlipidemia and
fatty liver disease (r=0.98, P<0.05). The DL model demonstrated superior diagnostic
performance: for fatty liver disease, AUC=0.93, accuracy=90.2%, recall=88.5%, and
specificity=89.8% (significantly higher than manual ultrasound, AUC=0.79, P<0.05); for
gallstones, AUC=0.89, accuracy=87.6%, and recall=85.3%. Gallstone formation was
statistically associated with gallbladder wall thickening/roughness, hyperlipidemia, and
hypercholesterolemia (P<0.005).Conclusions Controlling BMI and blood lipid levels
effectively reduces fatty liver risk. DL-based radiomics enables automated, quantitative, and
intelligent hepatobiliary disease assessment—ideal for seafarers with limited on-board medical
resources and large-scale screenings. Combining this Al tool with targeted health education
and lifestyle interventions will enhance the efficiency and accuracy of seafarers’ hepatobiliary
health management.

1.Introduction

impairment with normal bile. This condition is more common
in adults, with a higher incidence in females than in malesl],
and its prevalence increases with age after 40 years old.

With the development of society, obese people is on the
rise, and the incidence of fatty liver is increasing year by year.
The incidence of fatty liver in adults in our country is about
25% - 30%. Fatty liver refers to a lesion characterized by
excessive fat accumulation in hepatocytes induced by
multiple factors, which is manifested as diffuse fatty
infiltration in hepatic parenchymal cells!'l. Generally, if
detected early, most cases can be reversed with active clinical
intervention.

The incidence of gallstone in Chinese population is 7%-
11.64%M?1. Gallstones are not just gall bladder contractility
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Cholelithiasis, encompassing both gallbladder stones and bile
duct stones, is a prevalent digestive system disease.

Seafarers carry out shipping business when they stay away
from the mainland, performing an important part in the flow
of goods in society. So their health deserves all the attention
of society. This study conducted a retrospective survey on
7232 male seafarers who underwent physical examinations at
Shanghai Waterway Hospital. All participants received
abdominal ultrasound scans, blood lipid tests, and body mass
index (BMI) measurements. The purpose of this research was
to analyze the correlations among these indicators, thereby
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providing a reference for understanding the hepatobiliary
health status of seafarers and formulating targeted prevention
strategies.

2. Materials and Methods
2.1.General Information

Randomly select 7232 male seafarers who received
physical examination at Shanghai Waterway Hospital from
June 2022 to November 2023 as the sample for this paper.
Their ages ranged from 20 to 63 years old, with a mean age of
45.301+10.07 years.

2.2.Diagnostic Criteria

2.2.1.Diagnostic Criteria for Fatty Liver Disease

An abdominal ultrasound diagnosis was carried out
according to the Guidelines for the Diagnosis and Treatment
of NAFLD (2018 Edition)™. A diagnosis of fatty liver disease
could be confirmed if the following three criteria were met: 1.
The oblique diameter of the right liver exceeded 140 mm,
with blurred intrahepatic ductal structures; 2. Enhanced near -
field echo of the liver; 3. Attenuated far - field echo of the
liverBIl¢l, See Fig 1 for the ultrasound image.

2.2.2.Diagnostic Criteria for Intrahepatic Lipid Deposition

Intrahepatic lipid deposition was defined as having a
slightly more dense and strong enhanced near - field echo
on the liver, without obvious far - field echo attenuation
and clear displaying of intrahepatic duct’ s structure, liver
size enlarge with oblique diameter less than 140mm for right
side liver.

2.2.3.Ultrasonic Diagnostic Criteria for Gallstones

Ultrasonic Features of Gallstones had obvious strong
echoes or masses, there is an acoustic shadow behind it, and
they would move with body postures. Additional diagnostic
signs included thickened and rough gallbladder walls (with a
thickness exceeding 3 mm)PI7] See Fig 2 for the ultrasound
image.

2.2.4.Diagnostic Criteria for Hyperlipidemia

Diagnosis: Diagnostic criteria were established according
to the Guidelines for the Prevention and Treatment of
Dyslipidemia in Chinese Adults®l. To diagnose dyslipidemia,
the following 4 were met at the same time. Total cholesterol
(TC)=5.2 mmol/L; triglycerides (TG)=1.70 mmol/L; low -
density lipoprotein cholesterol (LDL - C) = 3.4 mmol/L; high
- density lipoprotein cholesterol (HDL - C)<1.0 mmol/LPl.

2.2.5.Measurement Methods and Classification of Body Mass
Index (BMI)

Measurement process and BMI calculation was performed
in accordance with the Chinese Guidance on Medical
Nutritional Therapy for Obesity and Excess (2021)01%,
Calculation formula was BMI = weight (kg) / height®> (m).
The classification standards were as follows: BMI<18.5 kg/m

> was considered underweight; 18.5 kg/m? < BMI < 23.9
kg/m?* was normal; 24 kg/m? < BMI<27.9 kg/m*> was
overweight; and BMI=28 kg/m? was defined as obesityl.

2.3.Research Methods

Performed abdominal ultrasound examinations through
Apollo 500 ultrasound system and Esaote MyLab Gamma
ultrasound machine with a probe frequency of 3.5 MHz.
Blood lipid tests were carried out with a Hitachi automatic
biochemical analyzer (Model 7180). All subjects underwent
fasting abdominal ultrasound examinations, height and weight
measurements. Venous blood samples were collected and sent
to the laboratory for subsequent testing.

2.4.Statistical Analysis

Statistical analysis was done with chi-square test,
correlation analysis and t-test. Data were processed using
SPSS 26.0 software, and manually calculated for data
correction.

Fig 1 Typical Ultrasonic Image of Fatty Liver Disease

Fig 2 Typical Ultrasonic Image of Gallstones
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2.5.Data Source and Preprocessing

2.5.1.Image Data

All of the abdominal ultrasound images come from an
Apollo 500 ultrasound device (probe frequency 3.5 MHz) and
Esaote Mylab Gamma ultrasound device (probe frequency 3.5
MHz) that were used in the physical examinations of the 7232
seafarers. A total of 21,696 ultrasound images (3 images per
subject, covering longitudinal, transverse, and oblique views
of the liver and gallbladder to ensure comprehensive tissue
visualization) were included. The image resolution was
unified to 512 X 512 pixels through bilinear interpolation,
eliminating differences in image size caused by different
ultrasound equipment parameters and scanning distances.

2.5.2.Data Preprocessing
2.5.2.1.Speckle Noise Reduction

Ultrasound imaging comes naturally with a bunch of
speckle noise which makes it hard to get information from
liver/gallbladder tissue. A combined filtering strategy is used,
first gaussian filter (kernel = 3*3, sigma=0.8) was used to
smooth high-frequency noise, and then median filtering
(kernel size 3 X 3) was applied to preserve edge information
of tissues (e.g., gallbladder wall boundaries, liver parenchyma
edges) while suppressing residual noise.

2.5.2.2.Gray Level Normalization

To remove the interference caused by uneven illumination
(such as different probe gains), the min-max normalization
method was used to set the gray value of all images to the
range [0, 1]. The calculation formula is as follows(1):

X—Xonin
Xnorm: KXmax—Xmin ( 1 )
Where X is the original gray value of a pixel, Xmin is the
minimum gray value of the whole picture and the Xmax is the

maximum gray value of the whole picture.
2.5.2.3.Data Augmentation

To deal with the issue of insufficient variety in training set
samples (to avoid model overfitting) and to emulate the
different ultrasound scans in a real-world setting, the training
set, which consists of 70% of all samples, was enhanced with
the following methods: (No augmentation was performed on
the validation and test sets to guarantee the genuine testing
experience:

(1)Geometric transformation: Random rotation (angle
range 0° -15° ), horizontal flipping (probability 0.5), vertical
flipping (probability 0.3), and scaling (magnification range
0.8-1.2 times);

(2)Intensity transformation: Random adjustment of
brightness ( = 10%) and contrast ( = 8%) to simulate
differences in scanning light conditions;

(3)Elastic  deformation: Using the ElasticTransform
function in the Albumentations library for small-range
elasticity distortions (deformation coefficient=0.1). This can
produce effects like those caused by changes in seafarers’
body positions in ultrasound pictures.

2.6.Annotation of Region of Interest (ROI)

Two senior ultrasonic physicians (having over 10 years of
clinical expertise in abdominal ultrasound diagnosis, and
accredited by the Chinese Medical Association Ultrasound
Branch) annotated the ROIs of the liver and gallbladder via
ITK-SNAP 3.8.0 software (a specialized medical image
annotation platform).

(1)Liver ROI: Hepatic p, except portal v, hepatic v and bile
ducts.

(2)Gallbladder ROI: Includes gallbladder Ilumen and
gallbladder wall together (simultaneously assessing the
presence of gallstones and gallbladder wall thickness).

There is a third chief physician ( = 15yers), involved in
consultations for any inconsistency in annotations, e.g ROI
boundary difference over Spix. The inter-observer consistency
of annotations was evaluated using the Kappa coefficient: the
Kappa value for liver ROI annotation was 0.92, and for
gallbladder ROI annotation was 0.89, both exceeding 0.8,
indicating excellent consistency and reliability of the
annotated data.

2.7.Deep Learning Model Design

To realize the full automation flow of “ automated ROI
segmentation —  deep radiomic features extraction —
hepatobiliary disease prediction” , a two-stage deep learning
framework was constructed according to the Al-based
diagnostic logic shown in the abstract. The framework
structure is shown in Fig 4 (Note: Supplement with a
framework diagram, where the first stage is U-Net-based
segmentation, the second stage is MobileNetV2-based feature
extraction and fusion, and the final output is disease
prediction results).

2.7.1.ROI Segmentation Model: U-Net

I choose to use U-Net, which is very common, because it is
an excellent model for the segmentation of medical images,
especially in small sample sizes. The model structure includes
three parts:

(1)Encoder (Down-sampling Module): consisting of 4
down - sampling blocks. Each block consists of two 3 X 3
Convolutional Layers with ReLU activation function,
followed by one 2 X2 Max Pooling Layer (Strides = 2). The
encoder is used to extract low-level features of the image (e.g.,
tissue edges, texture details) and gradually reduce the image
resolution to expand the receptive field.

(2)Decoder (Up-sampling Module): consists of 4 up-
sampling blocks. For every block there is one 2x2
tconvolution layer(stride = 2), which is used to bring back the
image resolution and concat (Concatenate) it with the feature
map of the same layer in the encoder to bring back the spatial
information lost during the down-sampling. After
concatenation, two 3 X 3 convolutional layers (activated by
ReLU) are used to refine the feature map.

(3)Output Layer: One 1x1 conv layer(sigmoid) is
employed to yield a binary segmentation map with the target
ROI (liver/gall bladder) as 1-pixel values and background
(such as adipose tissue, other abdominal organs) as 0-pixel
values.
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To resolve the issue of the unbalanced number of pixels in
the ROI and background (with background pixels being more
than 60% of the entire picture), the loss function combines
Dice Loss with Crossentropyloss (ratio of weight 1:1). The
Dice loss calculation formula is(2):

. _,_2x|my|
Dice Loss=1 Y] 2

Where Y is the manual annotation map (Gold Standard)
and Y” is the model-predicted segmentation map. | * |
represents the number of pixels in the sets.

2.7.2.Disease Prediction Model: MobileNetV2+Feature

Fusion
2.7.2.1.Deep Radiomic Feature Extraction

Use pretrained MobileNetV2 backbone net which is
trained on ImageNet dataset, it is largescale natural images
dataset, for extracting deep radiomic features. The last fully
connected layer of the original MobileNetV2 was removed,
and the output of the global average pooling layer (a 1280-
dimensional feature vector) was taken as the deep radiomic
feature. This feature vector contains high-level abstract
information of the tissue (e.g., liver fat content-related texture
features, gallstone-related echo features), which is more
comprehensive than manually designed features.

2.7.2.2 Multi-modal Feature Fusion

Using the 1280 dimensional deep radiomic features in
combination with 5 clinical indicators (BMI, TC, TG, LDL-C,
HDL-C) to generate a 1285 dimensional combined feature
vector. This fusion strategy leverages both image information
and clinical data, improving the model’ s prediction accuracy
(consistent with the abstract’ s mention of “fusing clinical
indicators and deep radiomic features” ).

2.7.2.3.Classification Head

A two-layer fully connected network was constructed as
the classification head:

(1)The first layer: 256 neurons (activated by ReLU
function), with a Dropout layer (Dropout rate 0.5) added to
prevent overfitting;

(2)Second layer: 2 neurons (sigmoid function activation),
the probability of fatty liver disease and gallstones
respectively, the probability > 0.5 diagnose as positive
otherwise negative.

2.8.Model Training and Optimization

2.8.1.Dataset Division

Using stratified sampling (to ensure the incidence of fatty
liver disease and gallstones in each set is consistent with the

overall sample), the 7232 subjects were divided into three sets:

(1)Training set: 5062 subjects (70%), used for model
parameter learning;

(2)Validation set: 1085 subjects (15%), wused for
hyperparameter adjustment and early stopping;

(3)Test set: 1085 subjects (15%), used for final
performance evaluation (model has no access to test set data
during training).

2.8.2.Training Environment and Parameters

The model was developed using PyTorch 1.13 deep
learning framework, and the training environment used
NVIDIA RTX 3090 GPU with 24GB memory, Ubuntu 20.04
system. The key training parameters were:

(1)Batch size: 16 (balanced between training efficiency
and memory usage);

(2)Initial learning rate: 1e-4;

(3)Training epochs: 50;

(4)Optimizer: Adam optimizer (B1=0.9, $2=0.999), which
adaptively adjusts the learning rate;

(5)Learning rate scheduler: Cosine annealing scheduler,
which reduces the learning rate by 1/10 when the validation
loss does not decrease for 5 consecutive epochs (to avoid
local optimal solutions).

2.8.3.Regularization Strategies

Other than dropout, I set weight decay (12) = le-5 on all
fully connected layers to reduce model overfitting. I use early
stopping which is patience = 8, meaning that the training will
stop, if the validation does not improve for 8 consecutive
epochs, so as to avoid an invalid training and prevent the
model from overfitting. training was terminated if the
validation loss did not decrease for 8 consecutive epochs (to
avoid invalid training and overfitting).

2.9.Model Performance Evaluation

This section clarifies the calculation logic, visualization
methods, and statistical comparison basis for the performance
indicators (AUC, accuracy, recall, specificity) mentioned in
the abstract.

2.9.1.Definition of Binary Classification Results

First, the four basic results of binary classification
(diseased/non-diseased) were defined to standardize the
calculation of all indicators:

(1)True Positive (TP): Subjects actually diagnosed with the
disease (gold standard) are correctly predicted as positive by
the model,;

(2)True Negative (TN): Subjects actually without the
disease (gold standard) are correctly predicted as negative by
the model,;

(3)False Positive (FP): Subjects actually without the
disease are incorrectly predicted as positive (misdiagnosis);

(4)False Negative (FN): The actual subjects who have the
discase are predicted wrongly as negative (miss predicted
negative).

The gold standard for disease diagnosis included: fatty
liver, which was diagnosed through a 3-follow-up
examination for 3 months and ultrasound diagnosis by 3 chief
physicians; gallstones, which were diagnosed through
surgical pathological diagnosis (for patients with
cholecystectomy) and CT re-examination (for those without
surgery).
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2.9.2.Calculation Method of Performance Indicators
2.9.2.1.Accuracy (Acc)

Reflects the overall correctness of the model’s predictions,
which is the proportion of correctly predicted samples
(TP+TN) to the total number of samples. The calculation
formula is(3):

TP+IN
ACe= e Ep N G)
This indicator matches the “ accuracy of 90. 2% (fatty

liver) and 87. 6% (gallstones)” in the abstract.
2.9.2.2 Recall (Sensitivity)

It reflects on the subject matter model to identify the sick
ones and it” s more about reducing false negatives (because
we do seafarers’  first disease screening, missed diseases
equal delayed diagnosis). The calculation formula is(4):

TP

TPAFN )
“ fatty liver, 88.5%, gallstones

Recall=

This is the same as the
85.3%” in the abstract.

2.9.2.3.Specificity (Spe)

Reflecting how the model picks out the non sick ones to
lessen the chance that this wrong diagnosis would give extra
medical pressure and further tests to the sea workers. The
calculation formula is(5):

_ I
Spe=Tnrr ©)

This indicator corresponds to the “ specificity of 89.8%
(fatty liver)” mentioned in the abstract.

2.9.2.4 Area Under the ROC Curve (AUC):

(1)ROC Curve Drawing: The ROC graph uses FPR as the
horizontal axis, TPR (i.e., Recall) as the vertical axis. By
adjusting the model’ s classification threshold (from 0 to 1),
multiple (FPR, TPR) coordinate points are generated, and the
curve is fitted by connecting these points. The FPR
calculation formula is(6):

FPR=—2 (6)
TN+FP

(2)AUC Calculation: AUC is the area under the ROC, it
can be computed by the trapezoidal integration method. The
range for AUC is from [0.5-1]. The value of 0.5 is random,
and a score of 1.0 is perfect. This indicator corresponds to the

“ AUC of 0.93 (fatty liver) and 0.89 (gallstones) ”
mentioned in the abstract.

2.9.2.5.F1-Score

Balances the trade-off between precision (proportion of
correctly predicted positive cases among all predicted positive
cases,

.. TP
Precision= )
TP+FP

(7)and Recall, which is suitable for scenarios with
unbalanced sample sizes (e.g., the incidence of gallstones in
seafarers is only 4.40%). The calculation formula is(8):

Precision*Recall

F1-Score=2x (®)

PrecisiontRecall

2.9.3.Visualization of Performance Indicators

In order to more visually display the model’ s results, as
well as a reason for the indicators presented within the
abstract I chose to create the following graph with the Python
library called Matplotlib v3.7.1 which uses the data set from
the test set to maintain objectivity (n=1085):
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Fig 3 ROC Curve Comparison Graph
For Fatty liver disease and gallstones(Fig 3), we draw the
ROC curve of DL model, TR model, MD group in the same
coordinate system. For fatty liver disease, the DL model
achieved an AUC of 0.93, the TR model 0.82, and the MD
group 0.79; for gallstones, the DL model’s AUC was 0.89, the
TR model 0.80, and the MD group 0.76. Each curve was
labeled with its corresponding AUC value, directly reflecting
the DL model’ s superior discriminative ability compared to

the other two groups as stated in the abstract.
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Fatty Liver (DL Model)
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Fig 4 Confusion Matrix Heatmap

A confusion matrix heatmap of size 2 X 2 was drawn for
each disease of the DL model test set results. The numbers
and proportions of true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN) cases were
marked on it as shown in Fig 4. For fatty liver disease:
TN=554 (89.8%), FP=63 (10.2%), TP=414 (88.5%), FN=54
(11.5%); for gallstones: TN=910 (87.8%), FP=127 (12.2%),
TP=41 (85.4%), FN=7 (14.6%). The heatmap intuitively
displays the DL model ’ s ability to distinguish between
diseased and non-diseased cases, with high TP and TN
proportions confirming its reliability in clinical screening.
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Fig 5 Multi-indicator Box Plot

statistical Test Results (Deep Learning vs Manual Diagnesis):

Dizeate Metric Test Method (DL vz WMD) Significance Mark Ewact P-Value Significance
iver Disedde  Accuracy Paired Chi-Square " 8,806 Yid
e Disease Recall Mehemar Test o5 8,209 Yos
Fatty Liver Disease Specificity r 8.832 Yes
Fatty Liver Disease  Fl-Score Independent t-test o 8.8a7 Yes
Gallstones  Accuracy Paired Chi-Square " 8,208 Yes
Gallstones Recall Mchemar Test i 8.e12 Yeu
Gallstones Spacificity Mchemar Test . B.835 Yes
Gallstones  Fl-Score  Indepemdent t-test " #.009 Yes

Fig 6 Analysis chart of statistical results for Python-run deep learning and
manual diagnosis

Box Plots have been used to compare accuracy(recall),
Recall, Specificity (Fig 5) and F1-Score of the DL,TR,MD
groups Statistical significance markers have been added via
post hoc testing, "**' for p < 0.01, "*' for p < 0.05. For fatty
liver disease(Figure 6), the DL model’s accuracy (P=0.006),
recall (P=0.009), specificity (P=0.032), and F1-Score
(P=0.007) were all significantly higher than those of the MD
group; for gallstones, the DL model’s accuracy (P=0.008),
recall (P=0.012), specificity (P=0.035), and F1-Score
(P=0.009) also showed statistically significant advantages
over the MD group. This visualization directly verifies the
abstract’s conclusion that “the deep learning model
outperforms traditional manual ultrasound diagnosis”.

2.9.4 Statistical Comparison Method

To verify the statistical significance of performance

differences between groups (consistent with the abstract’s
“P<0.05”), the following methods were adopted:

(1)AUC Comparison: The pairwise AUC differences
between model were compared using DeLong test
(delong_roc_viz). DL vs TR, DL vs. MD, TR vs. MD). This
test is specifically designed for ROC curve comparison and is
suitable for small-sample scenarios, ensuring the reliability of
AUC-based superiority conclusions.

(2)Accuracy/Recall/Specificity Comparison: Accuracy-a
proportion indicator-I used a pair-chi-squared-test because for
each subject’ s samples were evaluated both by DL-model
and by MD-team. For recall and specificity (binary
classification consistency indicators), the McNemar test was
applied to account for paired diagnostic results. All statistical
analyses were performed using SPSS 26.0 software, with
P<0.05 considered statistically significant.

2.10.Comparative Experiment Design

To further substantiate the advantages conveyed by the
Deep-learning based Radiomics method in the abstract two
comparison groups were created, each using consistent
division and evaluation standards as the DL group so that
their results can be fairly compared to:

2.10.1.Traditional Radiomics (TR) Group

(1)ROI Segmentation: The manual segmentation was
implemented by the 2 senior UL physicians (same as 6.2),to
remove an impact of different segmentation.

(2)Feature Extraction: Pyradiomics 3.0.1 is used to extract
68 handcrafted features including 18 gray level histogram
features such as mean gray level, gray level variance, 24 gray
level co-occurrence matrix features for example, contrast,
correlation, 26 wavelet transform features for example,
wavelet energy, wavelet entropy.
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(3)Feature Selection: The ReliefF approach chosen to
select 20 key features for reducing the dimensions and
avoiding curse of dimensionality.

(4)Model Construction: A random forest classifier
(n_estimators=100, max_depth=10) was built, with the same
training set (70%)/validation set (15%)/test set (15%) division
as the DL group.

(5)Performance Evaluation: The same indicators (Acc,
Recall, Spe, AUC, F1-Score) and calculation methods as
Section 6.5 were used for consistency.

2.10.2.Manual Diagnosis (MD) Group

(1)Diagnostic Process: All three ultrasonic doctors with
more than § years of real-world clinical experience read the
ultrasound examination images of the test sets, without
knowing the patient’s clinical information or the model
prediction information, making “ disease / no disease ”
diagnosis results. Inconsistent results were resolved by the
majority vote principle (2 or more physicians agreeing) to
determine the final diagnosis.

(2)Performance Evaluation: take consensus diagnosis
results as "manual diagnosis label ", use the same indicators
and calculation methods as 6.5. The ROC curve was
generated by averaging the true positive rate (TPR) and false
positive rate (FPR) of the three physicians’ diagnoses at
different subjective thresholds. This group corresponds to the

“ traditional manual ultrasound diagnosis (AUC=0.79) ”
mentioned in the abstract.

3.Results

In total, there were 7232 eligible male seafarers with an
age range between 20 - 63 years (mean age of 4530 =+
10.07).

3.1.Linear Correlation Between BMI and Incidence of Fatty
Liver Disease/Hyperlipidemia

As BMI rose, both FLD and hyperlipidemia had very
strong linear positive correlation. The linear regression
equation describing this relationship was Y = 12.49 + 0.91X
(where X represents BMI and Y denotes the combined
incidence of FLD and hyperlipidemia), with a correlation
coefficient r = 0.98, t = 6.83, degrees of freedom df = 2, and
P<0.05, indicating statistical significance of the correlation.

Stratified by BMI values in Table 1. Underweight group
(BMI<18.5 kg/m? ), there was no case of FLD (0/371, 0%),
and the incidence of hyperlipidemia was 6.74% (25/371). In
the normal weight group (18.5 - 23.9 kg/m? ), the incidence
of FLD was 20.06% (578/2882) and hyperlipidemia was
33.00% (951/2882). For the overweight group (24 - 27.9
kg/m?), these rates rose to 57.51% (1896/3297) for FLD and
75.07% (2475/3297) for hyperlipidemia. Notably, in the
obese group (BMI = 28 kg/m? ), the prevalence of FLD
reached 94.58% (645/682) and hyperlipidemia reached
91.94% (627/682), reflecting a dramatic increase in disease
risk with severe weight gain.

Table 1 Correlation Analysis and t-test of the Incidence Rates of Fatty Liver Disease and Hyperlipidemia Among Different BMI Groups

total

sign <185 % 18.5-23.9 24-27.9 % 28 % o
column

fatty liver disease 0 0 578 20.06 1896 5751 645 94.58 3119

hyperlipidemia 25 6.74 951 33.00 2475 75.07 627 91.94 4078

t=6.83 v=2 P<0.05

3.2.BMI-Associated Differences in Hyperlipidemia, Fatty
Liver Disease, and Intrahepatic Lipid Deposition

Performing Chi - Squared tests to look at the differences
for Metabolic/lipid - related and hepatic - related lipid -
related paramaters in the groups, Results from table 2. For
hyperlipidemia versus normal blood lipid levels, the chi-
squared value was 1830.73 (df=3, P<0.005), indicating
statistically significant variations in lipid status among
different BMI groups. Specifically, the number of subjects
with hyperlipidemia increased progressively with BMI: 25 in
the underweight group, 951 in the normal weight group, 2475
in the overweight group, and 627 in the obese group. In
contrast, the number of subjects with normal blood lipid

levels decreased with increasing BMI (346, 1931, 822, and 55,
respectively).

In patients with hepatic lipid-related conditions (FLD,
intrahepatic lipid deposition and normal hepatic echogenic
pattern) the Chi-Square Value is equal to 2946.32,
df=6,p<0.005, so between groups difference exist.
Intrahepatic lipid deposition, a precursor to FLD, was most
prevalent in the overweight group (972/3297, 29.48%),
followed by the normal weight group (617/2882, 21.41%),
while it was rare in the underweight (3/371, 0.81%) and obese
(37/682, 5.43%) groups. Normal hepatic echo patterns were
most common in the underweight group (368/371, 99.19%)
and gradually decreased with increasing BMI, with no cases
observed in the obese group (0/682).

Table 2 Chi-Squared Test Results of Hyperlipidemia, Fatty Liver Disease, and Intrahepatic Lipid Deposition Among Different BMI Groups

sign <18.5 18.5-23.9 24-27.9 >28 total column
hyperlipidemia 25 951 2475 627 4078
normal blood lipid levels 346 1931 822 55 3154
¥2=1830.73, v=3,P<0. 005
fatty liver disease 0 578 1896 645 3119
intrahepatic lipid deposition 3 617 972 37 1629
normal hepatic echo patterns 368 1687 429 0 2484
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sum 371

2882 3297 682 7232

%2=2946.32, v=6,P <0. 005

3.3.Risk Factors Associated with Gallstone Formation

Univariate chi-squred analyses on factors for gallstone
formation, presented in table 3: There is an obvious
relationship between gallstone disecase and gallbladder wall
thickening/roughness (x*=5152.12, df=1, P<0.005).

Among 312 subjects with thickened gallbladder walls, 268
(85.90%) were diagnosed with gallstones, whereas only 50
(0.72%) of 6920 subjects with normal gallbladder walls had

gallstones. This indicates that gallbladder wall abnormalities
are a major risk factor for gallstone development in seafarers.

High blood cholesterol is also significantly associated with
gallstones x* = 48.72, df=1, P<0.005 of the 3967 subjects
with hypercholesterol, 235 (5.92%) had gallstones versus 83
(2.54%) of the 3265 subjects with normal cholesterol levels.

These findings highlight the role of cholesterol metabolism
disorders and gallbladder wall integrity in the pathogenesis of
gallstones in this occupational cohort.

Table.3 Association Between Gallstones, Thickened Gallbladder Walls, and Elevated Blood Cholesterol Levels

sign gallstones negative total number of subjects
thickened gallbladder walls 268 44 312
normal gallbladder walls 50 6870 6920
¥2=5152.12 , v=1P<0.005
elevated blood cholesterol 235 3732 3967
normal blood cholesterol levels 83 3182 3265
sum 318 6914 7232

¥2=48.72 , v=1P <0.005

3.4.Diagnostic Performance of the Deep Learning Framework

Compared with traditional radiomics (TR) and manual
ultrasound diagnosis (MD), the two-stage deep learning (DL)
framework which fuses ROI segmentation with U-Net and
classification with MobileNetV2 along with the clinical-
radiomic feature fusion outperformed both FLD and
gallstones diagnosis.

3.4.1.Performance for Fatty Liver Disease

Test set (1085 subjects): The DL model achieved an AUC
of 0.93, accuracy of 90.2%, a recall score of 88.5%, and
specificity of 89.8%. The contrary occurred with the TR
model, giving an AUC of 0.82 and MD reached an AUC of
0.79 (Fig 3). Statistical comparisons using the DeLong test
confirmed that the DL model >~ s AUC was significantly
higher than both TR (P<0.01) and MD (P<0.05). Paired chi-
squared testing revealed the DL model s accuracy (P =
0.006) was statistically superior to MD, while McNemar tests
demonstrated significant advantages in recall (P=0.009) and
specificity (P=0.032) (Figure 6). The Fl-score of the DL
model (0.89) was also significantly higher than that of MD
(0.76, P=0.007 via independent t-test), reflecting a balanced
improvement in precision and recall critical for clinical
screening.

3.4.2 Performance for Gallstones

In the case of gallstones, the DL model reached an AUC of
0.89, an accuracy of 87.6% and a recall of 85.3% (Fig 3). The
TR model and MD group have lower AUC values, which are
0.80 and 0.76, respectively, and the DelLong test indicates
obvious differences compared with the DL model and MD
(P<0.05). Paired chi-squared testing showed the DL model’ s
accuracy was significantly higher than MD (P=0.008), and
McNemar tests indicated superior recall (P=0.012) and

specificity (P=0.035) (Fig 6). The DL model *° s Fl-score
(0.86) was also significantly higher than MD (0.73,P=0.009).

3.4.3.Confusion Matrix and Multi-Indicator Validation

Confusion matrix Analysis (Fig 4) proved that the DL
Model is reliable. For FLD the model had 414 correct positive
identifications (TP=88.5%) out of 468 positive cases
identified, 554 of 617 negative (TN=89.8%) cases correctly
identified, 63 false positives (10.2%), and 54 false negatives
(11.5%). For gallstones, 41 of 48 positive cases were correctly
detected (TP=85.4%), and 910 of 1037 negative cases were
accurately classified (TN=87.8%), with 127 false positives
(12.2%) and 7 false negatives (14.6%). Box plot comparisons
(Fig 5) illustrated that the DL model outperformed TR and
MD across all key metrics (accuracy, recall, specificity, F1-
score), with consistent statistical significance (P<0.05 for all
comparisons vs. MD), confirming its robustness for
hepatobiliary disease screening in seafarers.

4.Discussion

The diagnostic modality used in this study, which is
ultrasonography, is a well-known reliable and common tool
used in routine screening to find out fatty liver and
gallstones!”!. For FLD, key ultrasonic indicators include
enhanced near-field liver echo, blurred intrahepatic ductal
structures, and attenuated far-field echo—findings that ensure
accurate detection of both typical and heterogeneous forms of
the diseasel7). For gallstones, the classic ultrasonic triad
(hyperechoic foci, posterior acoustic shadowing, and
positional mobility) enables consistent identification of most
cases, with additional capacity to detect associated conditions
like cholecystitis®®!”). Notably, chronic cholecystitis frequently
coexists with biliary calculi, while acute calculous
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cholecystitis requires prompt clinical intervention®™I!'l, This
established diagnostic framework provided the foundation for
our assessment of seafarer hepatobiliary health.

From our investigation we discovered that there was quite
a high percentage of FLD occurrence at around 43.13%, much
higher than that for the general population. Critically, this
incidence demonstrated a strong linear positive correlation
with body mass index (BMI) (r=0.98, t = 6.83, P<0.05), with
chi-squared analysis confirming that FLD, intrahepatic lipid
deposition, and hyperlipidemia rates increased proportionally
with elevated BMI (P<0.005). This underscores BMI control
and lipid management as core strategies for FLD prevention in
this cohort.

But male seafarer’s gallstone incidence was about 4.40%
lower than the average of the general population. This
difference could potentially be because there are more women
than men with gallstones, so they are the base level overall.
Chi-squared testing identified statistically significant
associations between gallstone formation and gallbladder wall
thickening/roughness, hyperlipidemia, and
hypercholesterolemia (P<0.005)—consistent with established
links between cholesterol metabolism and biliary stone
formationBI],

These things have to be seen from within the special
working environment of seafarers. They’re on a ship with
unique health problems: an off-and-on work-break schedule,
the feeling of being separated from the mainland, not much
medical help to look out for hard-to-see sicknesses, and a
boring food that’s mostly frozen meat that doesn’t have many
fruits and veggies. These factors likely contribute to the
elevated FLD risk observed, particularly through their impact
on BMI and lipid profiles.

Based on these insights, we propose targeted hepatobiliary
disease prevention strategies for seafarers:

(1)Seafarers have to take offboard physical exam in time
on account of scarce onboard medical facilities and risk of
missed occult symptom.

(2)Diet should be improved so as to reduce dependence on
frozen foods and boost consumption of fresh vegetables and
fruits.

(3)We need strengthened health education concentrating on
risks, prevention, and treatments for hepatobiliary diseases so
our alert rises up. Carry out regular screenings and
interventions so as to enable an early detection and handling
situation.

(4)Controlling food intake, increasing physical activity
more working condition improvement to reduce working
stress, etc. all have significance on maintaining health livers
and other organs.

In addition to the abovementioned preventive measures,
technological progress in diagnostic imaging presents
opportunities for transforming seafarer hepatobiliary health
maintenance, in particular, radiomics and its combination with
artificial intelligence (Al) especially deep learning. Radiomics,
first proposed by Lambin et al. in 2012, quantifies high-
dimensional features from multi-modal imaging data to
enhance diagnostic precision!!?), and its sonomics subfield
aligns directly with the ultrasound-based approach of our
study®]. However, the true breakthrough lies in Al-driven
radiomics, which addresses key limitations of traditional

radiomics and forms the core of our technical innovation—
findings complemented by comparative analyses in Fig 3 and
4.

3 Traditional radiomics uses manual feature design and
extraction(e.g., histogram of graylevel,wavelet
transform)!'115], it is tedious work and hard to be reused —
from Fig 3 we can see the traditional model got the lowest
diagnostic accuracy compared to seafarer because those
traditional models are based on manually designed features. In
contrast, Al-powered radiomics (primarily deep learning)
revolutionizes this workflow by integrating neural networks
into end-to-end feature learning and model training!'?l. As
detailed in our methodology, the deep learning pipeline
includes critical Al-specific steps: data augmentation
(rotations, flipping, noise injection) to mitigate small-sample
biases common in occupational health datasets, and automated
feature extraction that eliminates human subjectivity. These
Al-driven advantages—automatic feature learning, high
abstraction of complex imaging patterns, robust noise
resistance, and cross-task transferability—directly translated
to superior performance (Fig 3, 4): our deep learning model
achieved AUCs of 0.93 for FLD and 0.89 for gallstones,
outperforming both traditional radiomics and clinical expert
assessments. This aligns with broader trends in medical Al,
where self-learning algorithms unlock hidden imaging
correlates of disease that manual methods miss!'2,

In terms of seafarers, it directly addresses their specific
clinical challenges through this integration of Al-radiomics
The model’s robust performance in Fig 4 is needed for a
shipboard setting where there may be limited specialist access.
This model could give some non-expert personnel an early
rough assessment. When integrated with seafarer-specific
data—work schedules, dietary records, and stress metrics—AI
can generate personalized risk profiles: for example, flagging
crew with high BMI and abnormal ultrasound textures
(identified via the model’s learned features) as high FLD risk.
More importantly, the model’s ability to detect subtle imaging
changes (superior to traditional methods, Fig 3) enables early
identification of preclinical FLD or gallstone precursors,
allowing targeted interventions before symptomatic
progression. For acute conditions like biliary colic, Al-driven
predictive analytics could even alert high-risk individuals
based on longitudinal imaging and clinical data, facilitating
timely off-board care. As seafarer health datasets expand, the
model’s transferability will enable refinement for specific
subcohorts (e.g., long-haul vs. coastal seafarers), further
enhancing its clinical utility. Al-powered radiomics
transforms static ultrasound screening into a dynamic,
personalized health management tool tailored to the maritime
environment.
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