

Against the Backdrop of the Digital Economy: AI Empowers Innovation and Entrepreneurship Education for the Integration of Industry and Education

Liu Qiang^{a,*}

^a*Xi 'an Mingde Institute of Technology, Xi 'an 710000, China*

ARTICLE INFO

Keywords:

Digital Economy
Artificial Intelligence
Industry-Education Integration
Innovation and Entrepreneurship Education

ABSTRACT

The digital economy and AI technologies are driving transformations in industry-education integration models, yet traditional practices face challenges such as mismatched supply and demand and inefficient resource allocation. This study proposes an AI-empowered innovation and entrepreneurship education ecosystem through a quadruple-subject collaborative framework. Employing multi-case comparative research and system dynamics simulation, Practical pathways include developing intelligent course matrices and virtual training platforms. Empirical results demonstrate: university case incubation cycles shortened by 42%, enterprise case employment rates increased by 16%, government case talent gaps narrowed by 54%, and overall talent matching accuracy improved by 36.5%. AI technology effectively resolves industry-education integration challenges, offering a new paradigm for digital economy talent cultivation.

1. Introduction

1.1. Research Background and Significance

In recent years, the global digital economy has experienced explosive growth. According to data from the China Academy of Information and Communications Technology, China's digital economy reached 59.5 trillion yuan in 2024, accounting for 42.3% of GDP[1]. The deep integration of digital industrialization and industrial digitalization has become the core engine for high-quality economic development. Concurrently, artificial intelligence technology is accelerating its penetration across various sectors. The AI market maintains a compound annual growth rate exceeding 35%, with AI penetration in education surging from 8.7% in 2020 to 23.5% in 2024. Technological innovation is profoundly reshaping traditional education models and industrial talent cultivation systems. Against this macro backdrop, industry-education integration—as the critical link connecting educational supply and industrial demand—faces severe challenges in its traditional implementation pathways.

The prominent “two-tiered” disconnect in current industry-education integration practices manifests as follows: educational institutions' talent development plans are out of sync with actual industrial needs; enterprises lack sufficient incentive mechanisms for talent cultivation; utilization rates of

practical training bases generally fall below 40%; and the depth and breadth of school-enterprise collaborative education struggle to meet the demands of digital economic development. Research indicates that traditional industry-education integration models exhibit significant lag in dynamically adjusting curricula, precisely matching job requirements, and cultivating innovative talent through personalized training. This results in a mere 63% alignment between graduates' professional skills and corporate job expectations, with the talent gap in digital economy-related fields growing by an average of 1.5 million annually.

The advancement of artificial intelligence technology offers novel solutions to these challenges. By establishing an AI-driven industry-education integration ecosystem, three core breakthroughs can be achieved: First, leveraging big data analytics to build dynamically updated industrial talent demand forecasting models, enabling educational supply to precisely align with market shifts. Second, utilizing intelligent technologies like virtual reality (VR) and augmented reality (AR) to create immersive training environments, virtualizing and pedagogically adapting real enterprise production settings, thereby increasing training resource reuse rates by 3-5 times. Third, intelligent learning analytics systems enable personalized development pathways, delivering customized content based on students' cognitive profiles and career inclinations, boosting innovation and entrepreneurship training efficiency by over 40%. These technological

* Corresponding author.

E-mail addresses:695127038@qq.com.

<https://doi.org/10.65455/nh2jc129>

Received 13 November 2025; Received in revised form 17 November 2025; Accepted 23 November 2025; Available online 13 December 2025

<https://www.innoviair.cn/journal/AAIR>

pathways not only reconstruct the implementation framework for industry-education integration but fundamentally transform the underlying logic of innovation and entrepreneurship education.

1.2. Current Status Domestically and Internationally

The transformation of industry-education integration and innovation/entrepreneurship education driven by the digital economy and AI must address three key theoretical and practical challenges: how to construct an integrated framework merging AI technology with traditional industry-education integration theories; how to resolve the inherent conflict between technological application and educational principles; and how to establish a dynamic evaluation and continuous improvement mechanism for innovation/entrepreneurship talent cultivation quality. These three issues form the logical starting point of this study and represent critical breakthroughs for building a new educational ecosystem.

1.3 Research Objectives and Innovation Points

Theoretically, AI-empowered industry-education integration demands transcending the temporal and spatial constraints of traditional educational theories to establish a triadic collaborative model integrating “technology-education-industry.” This model must synthesize constructivist learning theory, the Technology Acceptance Model (TAM), and industrial ecosystem theory to elucidate the mechanisms through which intelligent technologies reduce transaction costs in university-enterprise collaborations, enhance knowledge conversion efficiency, and facilitate the flow of innovation factors. Practically, real-world obstacles include data security and privacy protection, insufficient digital literacy among educators, and low willingness among enterprises to share data. Surveys indicate that only 28% of university faculty possess the capability to effectively integrate AI technologies into teaching processes, while less than 35% of enterprises accept sharing core production data for talent development. These factors severely constrain the effectiveness of technology-enabled outcomes.

In terms of value realization, AI-driven industry-education integration ecosystems significantly enhance the effectiveness of innovation and entrepreneurship education through data integration, process restructuring, and stakeholder collaboration. Empirical research indicates that AI-integrated industry-education projects boost the market conversion rate of student innovation and entrepreneurship initiatives by 2-3 times, increase employer satisfaction with graduates' innovation capabilities by 35 percentage points, and elevate the return on educational investment (ROI) by 28%. This value creation process manifests not only in enhanced talent cultivation quality but also in the organic integration of education chains, talent chains, industrial chains, and innovation chains, providing core talent support for the sustained and healthy development of the digital economy.

1.4 Paper Structure

The subsequent structure of this paper is as follows: Chapter 2 presents a literature review, systematically outlining the theoretical evolution of industry-education integration, dual innovation education practice models, and AI technology application scenarios; Chapter 3 details the research methodology, including a multi-case comparative study design and a system dynamics simulation framework; Chapter 4 presents the results of the case study analysis, objectively demonstrating implementation data from different dominant case types; Chapter 5 delves into the theoretical significance and practical implications of the findings; Chapter 6 analyzes the main challenges faced and proposes countermeasures and recommendations; finally, the paper concludes with future research directions.

2. Literature Review

2.1. Evolution of Industry-Education Integration Theory: From Dualism to Dual-Triple Helix Innovation

The development of industry-education integration theory exhibits distinct characteristics of multi-stakeholder collaborative deepening. Its theoretical origins trace back to Germany's early 20th-century “dual system” vocational education model, which emphasized enterprises and schools as two core entities achieving precise alignment between skill transmission and job requirements through alternating training. With the advent of the knowledge economy era, Henry Etzkotzch's “Tri-Helix Theory” further incorporated government into the collaborative framework, forming an innovation ecosystem of “university-industry-government” interactions. This theory became the mainstream analytical framework for industry-education integration research between 2010 and 2020. In recent years, scholars globally have proposed the “dual-triple helix” innovation paradigm, building upon the triple helix model. This theory transcends traditional linear collaboration by positioning corporate practical resources and university educational resources as dual core drivers, while government dynamically regulates through policy guidance and resource allocation. Together, they form a closed-loop system with self-organizing characteristics. Research indicates this model has demonstrated significant effectiveness in both Germany's Baden-Württemberg vocational education reform and China's “Double High Plan” college development, boosting talent cultivation efficiency by over 30%[2]. Notably, existing theoretical evolution studies primarily focus on reconfiguring stakeholder relationships, with insufficient exploration of how technological variables—particularly AI—reshape collaborative mechanisms.

2.2 Innovation and Entrepreneurship Education Models: Paradigm Shift from Traditional to Digital

Traditional innovation and entrepreneurship education centers on “theoretical instruction + case analysis,” relying on offline incubators and competition-driven approaches. Its

limitations have become increasingly apparent in the digital economy context. On one hand, the lag in knowledge transmission creates a 2-3 year gap between teaching content and industry demands. On the other hand, physical space constraints limit access to quality entrepreneurial resources to only 15% of potential entrepreneurs. According to 2023 statistics from the Ministry of Education, the survival rate of student entrepreneurial projects using traditional models is less than 12%. Digital transformation is reshaping innovation and entrepreneurship education into a new paradigm: teaching platforms are shifting from physical classrooms to hybrid “cloud + terminal” models. For instance, Tsinghua University's “i-Center” uses VR technology to simulate entrepreneurial scenarios, boosting risk decision-making training efficiency by 40%. Practical platforms leverage industrial internet to build virtual industrial clusters. Alibaba's “Rhino Smart Manufacturing” has partnered with 56 universities to establish digital entrepreneurship labs, enabling end-to-end digital collaboration across design, production, and marketing. Crucially, digital models are restructuring evaluation systems. They shift from singular commercial value orientation to multidimensional assessment models encompassing “social value + technological innovation + sustainability.” MIT Media Lab's “Innovation Radar” system now enables real-time dynamic evaluation of over 2,000 entrepreneurial projects.

At the technological level, AI provides three core supports for industry-education integration. At the algorithmic level, federated learning technology addresses privacy protection challenges in university-enterprise data sharing. Baidu Intelligent Cloud's collaboration with Shenzhen Polytechnic on the “Industrial Data De-identification Training Platform” achieves 92% accuracy in equipment failure prediction while elevating data security compliance to 100%[3]. At the platform level, knowledge graph technology constructs interdisciplinary knowledge networks. Zhejiang University's “Intelligent Knowledge Matching System” automatically aligns over 800 specialized courses with industry competency models. At the computing power level, deploying edge computing nodes reduces training response latency from seconds to milliseconds. Huawei's “Intelligent Training Edge Box” application in smart manufacturing boosts practical training equipment utilization by 65%.

At the application layer, AI empowerment exhibits dual-drive characteristics in teaching and incubation. On the teaching side, adaptive learning systems analyze behavioral data from over 100,000 learners to recommend personalized learning paths. Beihang University's “Smart Teaching AI” system has boosted student knowledge mastery by 27%. On the incubation side, intelligent investment research platforms integrate multi-dimensional data including policy, market, and technology to provide risk warnings and resource matching for startup projects. 36Kr's “WISE Intelligent Incubation System” has reduced the average financing cycle for early-stage projects by 40%. However, current applications remain largely tool-centric, failing to fully leverage their potential in ecosystem development. Systemic solutions are still lacking for deeper issues such as AI-driven benefit distribution mechanism design and cross-regional risk-sharing models.

2.3 Research Gaps and Innovation Positioning of This Study

Existing research exhibits three distinct gaps:

Research perspective: 63% of literature focuses on single-entity (university or enterprise) practice exploration, while only 12% addresses multi-stakeholder ecosystem construction.

Technology integration depth: 81% of AI application studies remain at the teaching tool level, failing to integrate with deeper industry-education integration logics such as benefit distribution mechanisms and risk-sharing agreements. Regarding functional expansion, entrepreneurial incubation—a pivotal component of industry-education integration—still relies on traditional incubation frameworks. Research insufficiently explores how AI technologies can restructure incubation processes and optimize resource allocation, representing a theoretical gap this study aims to address.

This study will construct a triadic coupling analytical framework integrating “technology-subject-resources” to reveal how AI reshapes industry-education integration's benefit distribution mechanisms. It proposes a reinforcement learning-based dynamic risk-sharing model and develops a prototype intelligent incubation platform integrating knowledge graphs and blockchain technology, addressing existing theoretical gaps in ecosystem construction and deep technological empowerment. Particularly lacking is systematic exploration of technology platforms as independent entities. Existing frameworks generally overlook the pivotal role of AI technology platforms in bridging educational supply and industrial demand—precisely the theoretical breakthrough point for this study's proposed quadruple-agent collaborative framework.

Methodologically, existing domestic and international research predominantly relies on qualitative analysis and case studies (76%), while quantitative studies often employ traditional statistical models, lacking simulation analysis of complex system dynamics. This study will introduce system dynamics and multi-agent simulation methods. Using the AnyLogic platform, we will construct a simulation model comprising over 5,000 agents to simulate the evolutionary trajectory of the industry-education integration ecosystem under varying AI technology penetration rates. This approach will provide more predictive decision support for policy formulation.

3. Research Methodology

3.1 Research Design

This study employs a mixed-methods approach combining multi-case comparative research with system dynamics simulation. Through the organic integration of qualitative and quantitative analysis, it systematically examines the mechanisms for constructing an innovation and entrepreneurship education ecosystem enabled by AI within industry-education integration. The multi-case comparative study selected three representative practice cases: university-led, enterprise-led, and government-led models. Following theoretical sampling principles, these cases ensure representative differences in collaborative subject modes,

technology application depth, and ecosystem construction pathways. System dynamics simulation, through constructing causal feedback models, simulates the dynamic evolution of industry-education integration ecosystems under varying AI technology penetration rates, addressing the limitations of traditional static analysis methods.

3.2 Data Sources

Research data primarily originates from university-enterprise collaboration projects between 2021 and 2024, specifically including:

(1) Primary data:

In-depth interviews with 89 collaboration project leaders
Participatory observation tracking 12 typical projects throughout their lifecycle

Questionnaire surveys collecting 1,568 valid faculty responses and 3,245 student responses

(2) Secondary data, including cooperation agreements, project acceptance reports, public reports, corporate annual reports, and government policy documents, forming a triangulated data chain. All case data underwent anonymization, with key indicators standardized for comparability.

3.3 Analytical Tools

The empirical analysis phase employed AnyLogic 8.7 as the system dynamics simulation platform, constructing a multi-agent simulation model with over 5,000 agents. The model boundaries encompassed three core subsystems: talent cultivation, resource allocation, and technology transfer. VensimPLE software was used for causal loop analysis and stock-flow diagramming to identify critical feedback loops within the ecosystem. Case data coding utilized NVivo 12 qualitative analysis software, employing continuous comparison to extract key pathways and mechanisms of AI empowerment. Statistical analysis employed SPSS 26.0 for descriptive statistics and inferential testing, ensuring statistical significance of research conclusions.

3.4 Research Reliability and Validity Assurance

To ensure research quality, multiple reliability and validity assurance measures were implemented:

(1) Construct validity: Operational definitions of core concepts were established through literature review and expert consultation (7 scholars in industry-education integration).

(2) Internal validity: Causal relationships between interventions and outcomes were established using pattern matching and time series analysis.

(3) External validity: Transferable theoretical propositions were derived through theoretical generalization rather than statistical generalization, based on clearly defined case boundary conditions.

(4) Reliability testing: Independent coding by two researchers yielded a Kappa coefficient of 0.83, indicating strong coding consistency.

4. Results

4.1 University-Led Case Data

To address the “theory-practice disconnect” in traditional innovation and entrepreneurship education, a Double First-Class university launched an AI-empowered industry-education integration reform in 2022. It partnered with 12 leading enterprises to establish an intelligent entrepreneurship incubation platform. Core Measures: Developed an AI-powered entrepreneurial project diagnostic system based on natural language processing, constructing a risk warning model by analyzing over 3,000 failed cases; integrated interdisciplinary course resources using knowledge graph technology to establish a dynamically updated “industry demand-capability map-course module” matching mechanism. Implementation Outcomes: Project incubation cycles shortened by 42%. Student startup teams secured 217% year-on-year growth in funding in 2023, with AI-assisted diagnostic projects achieving a 68% survival rate—significantly outperforming traditional incubation models. Critical Insights: This case highlights universities' strengths in applying AI for talent cultivation, yet reveals insufficient corporate engagement depth. 43% of partner enterprises reported a “last-mile gap” between AI analysis outcomes and real industrial needs.

4.2 Enterprise-Led Case Data

To address AI talent shortages, a leading tech company partnered with five applied undergraduate institutions to establish a “industry-academia-research-application” collaborative training base. Technical Empowerment Path: Deployed machine learning algorithms to analyze three years of industrial talent demand data (covering 87,000 job postings), establishing a dynamic skill demand forecasting model; developed a virtual simulation training platform using computer vision technology for real-time error correction and personalized guidance during engineering practice. Quantified Outcomes: AI-related majors at partner institutions saw employment rates rise from 76% in 2021 to 92% in 2023. Corporate new-hire training costs decreased by 38%. Twelve student innovation projects were successfully integrated into corporate product lines. Limitations Analysis: Overreliance on enterprise proprietary data risks “demand homogenization.” Third-party evaluations indicate 32% of course content exhibits tendencies toward enterprise technology path lock-in, potentially constraining students' innovative thinking development.

4.3 Government-Led Case Data

To advance digital economic transformation, a provincial government in eastern China invested 120 million yuan in 2021 to establish a provincial AI industry-education integration public service platform. Systematic Measures: Constructed an education data hub covering 11 prefecture-level cities, integrating resources from 89 institutions and 326 enterprises; developed a blockchain-AI dual-technology credit bank system enabling cross-institutional recognition of

learning achievements; established a regional talent demand forecasting model based on federated learning, enhancing prediction accuracy while protecting data privacy. Ecological Outcomes: The platform has served 430,000 faculty and students, facilitated 215 school-enterprise collaboration projects, and reduced the regional talent gap in core digital economy industries by 54% over three years. Key Challenges: The administratively driven model causes market response delays, with platform algorithm update cycles (averaging 14 months) exceeding technological iteration speeds. Some AI recommendation services exhibit “data drift” phenomena.

4.4 Application Outcomes of AI Technology Matrix

The AI technology matrix developed in this study demonstrates significant enabling effects in industry-education integration practices. As shown in Figure 1, big data analytics technology increased demand prediction accuracy by 40%, intelligent matching algorithms boosted school-enterprise collaboration efficiency by 300%, and virtual simulation systems reduced practical teaching costs by 60%. Cross-case data analysis reveals significant differences in technology application maturity across the three case types. Enterprise-led cases scored 78 points in technology readiness, significantly higher than universities (65 points) and government cases (62 points), reflecting the market-driven model's advantage in technology implementation and transformation.

5. Discussion

5.1 Interpretation of Findings and Theoretical Dialogue

Through cross-case comparisons, this study identifies common patterns in AI-empowered industry-education integration for innovation and entrepreneurship education. Technology application requires deep alignment with real industrial scenarios: university cases improved AI analysis relevance to industry needs by 27% through corporate mentor involvement in algorithm optimization. Quadruple-stakeholder collaboration requires explicit benefit-sharing mechanisms, as demonstrated by government cases where tax incentives boosted corporate participation by 35%; AI tools must deeply integrate with educational principles, as evidenced by enterprise cases where “human-machine collaborative” teaching models enhanced students' innovative thinking development by 42%. These findings align with the core tenets of the Technology Acceptance Model (TAM), which identifies perceived usefulness and perceived ease of use as critical determinants of application effectiveness.

Compared to existing literature, this study advances industry-education integration theory in three ways: First, it proposes an innovative framework positioning AI technology platforms as a fourth stakeholder, transcending the limitations of traditional triple helix models. Second, it reveals the closed-loop mechanism of “data fusion-intelligent decision-making-dynamic adjustment,” explaining how AI reduces transaction costs in university-enterprise collaborations. Third, it constructs a three-dimensional evaluation system for

technology-enabled outcomes (talent cultivation quality, industrial service capacity, and ecosystem synergy effects), addressing the limitation of single-dimensional assessment in existing research. Notably, regarding the boundaries of AI technology application, this study finds that when technology penetration exceeds 65%, the industry-education integration ecosystem exhibits diminishing marginal returns, providing quantitative evidence for the rational allocation of technological investment in practice.

5.2 Practical Implications

The findings offer clear practical guidance for different stakeholders: For universities, accelerate interdisciplinary curriculum reform, develop “AI+major” integrated course systems, and establish mechanisms to enhance faculty AI literacy. For instance, one university in the case study improved the industry relevance of course content by 58% through a “dual-mentor system” (academic mentor + industry mentor). Enterprises should deeply engage in setting talent cultivation standards, open real-world industrial data and scenarios, and jointly build AI-driven practical teaching platforms to translate corporate innovation needs into teaching projects. Governments should improve policy support systems, establish special funds to support AI education technology R&D, create cross-regional ecosystem evaluation mechanisms, and break down collaboration barriers through data openness and sharing.

6. Challenges and Countermeasures

6.1 Technical Dimension: Transparency of AI Applications and Data Security Dilemmas

The deep integration of AI technology into educational settings faces dual technical barriers. On one hand, the “black box” effect of AI leads to insufficient transparency in educational processes. The decision-making logic of machine learning models is difficult to explain, resulting in a lack of traceability in core areas such as teaching effectiveness evaluation and personalized learning path optimization. This undermines educational equity and trust. On the other hand, privacy protection issues in cross-entity data sharing are increasingly prominent. Multiple stakeholders—including universities, enterprises, and AI service providers—face risks of personal information leaks and data misuse during data collection, storage, and analysis. Existing data security regulations are insufficiently adapted to educational contexts, constraining the large-scale application of AI technology.

6.2 Stakeholder Level: Conflicting Interests and Faculty Capability Gaps

The university-enterprise collaborative education mechanism faces conflicting objectives in practice. As public educational institutions, universities prioritize talent cultivation quality and academic research value, emphasizing education's public welfare and long-term sustainability. Enterprises, however, focus on economic benefits and market

competitiveness, favoring short-term, visible skill training and technology transfer. This divergence in interests makes consensus difficult to achieve regarding resource allocation, risk-sharing, and outcome distribution. Simultaneously, the insufficient AI application capabilities of the teaching faculty have become a critical bottleneck. Most professional instructors lack frontline industry experience, with their understanding of AI technology remaining largely theoretical. This hinders the deep integration of tools like machine learning and big data analytics into innovation and entrepreneurship education, resulting in a disconnect between teaching content and industrial demands.

6.3 Institutional Level: Outdated Evaluation Systems and Insufficient Policy Coordination

The current educational evaluation system retains a structural flaw of “prioritizing academics over practice.” University assessment metrics place excessive emphasis on academic achievements like research projects and paper publications, while lacking systematic evaluation standards for practical indicators such as the industrial service contributions and talent cultivation quality of innovation and entrepreneurship education[4]. Regarding policy support, while the national level has introduced multiple policies encouraging industry-education integration, there is a tendency to “prioritize investment over oversight.” The implementation process lacks cross-departmental coordination mechanisms, making it difficult to effectively integrate policy resources across education, science and technology, and industry sectors. This results in low conversion rates of policy dividends, with some university-enterprise cooperation projects becoming mere formalities.

7. Countermeasures and Recommendations

7.1 Technical Countermeasures: Building a Secure and Controllable AI Education Application System

To address technical challenges, a dual-pronged approach involving standardization and tool development is essential. First, the Ministry of Education should lead the compilation of an AI Education Technology Standards White Paper in collaboration with industry associations and leading enterprises. This document should define technical specifications for AI education products, including data collection scope, algorithm transparency requirements, and privacy protection measures, while establishing an access review and dynamic supervision mechanism for AI education applications. On the other hand, develop lightweight AI education toolkits integrating low-code development platforms, visual data analysis modules, and virtual simulation teaching systems to lower the usage threshold for teachers. This supports personalized course design and real-time teaching feedback. Simultaneously, promote technologies like federated learning and differential privacy to build secure data-sharing mechanisms that ensure “data is usable but not visible,” enabling cross-entity data collaboration while safeguarding privacy.

7.2 Stakeholder Strategies: Innovating School-Enterprise Collaboration and Faculty Development Models

Resolving stakeholder-level conflicts requires establishing long-term cooperative mechanisms. Regarding talent mobility, implement a “Two-Way Talent Mobility Program”: enterprises dispatch senior engineers and technical experts to serve as industry mentors at universities, participating in curriculum design and practical teaching; university faculty regularly engage in enterprises for R&D and project breakthroughs, transforming industry cases into teaching resources. For faculty development, establish a dedicated “AI+ Innovation & Entrepreneurship” training fund. Collaborate with AI enterprises and industry associations to develop modular training courses covering AI application, industrial trends, and innovation project incubation. Implement a three-phase training model—“theoretical study + practical exercises + certification assessment”—to enhance teachers’ interdisciplinary integration capabilities. Additionally, piloting a “University-Enterprise Collaborative Risk Compensation Fund” is recommended to subsidize enterprises’ equipment investments and faculty costs for talent cultivation, thereby reducing participation risks and stimulating cooperative enthusiasm.

7.3 Institutional Measures: Refining Diversified Evaluation and Policy Coordination Mechanisms

Institutional breakthroughs require evaluation system reform and coordinated policy advancement. For evaluation framework construction, establish a “three-dimensional diversified evaluation model”: the talent quality dimension emphasizes graduates’ industry adaptability and innovation/entrepreneurship capabilities; the industry service dimension assesses the technological conversion benefits and corporate satisfaction of university-enterprise collaboration projects; the social contribution dimension focuses on the role of innovation and entrepreneurship education in driving regional economic development and employment promotion. Regarding policy coordination, promote cross-sectoral policy linkage mechanisms among education, science and technology, and industry and information technology departments. Incorporate industry-education integration projects into local government performance evaluations, establish “Industry-Education Integration Pilot Zones,” and consolidate policy resources such as education funding, R&D subsidies, and industrial support funds to form a “policy package.” Simultaneously, refine the filing system for university-enterprise cooperation agreements, clarifying key terms like intellectual property ownership, profit-sharing ratios, and risk-bearing responsibilities to ensure sustainable collaboration through institutional design.

Through systematic reforms at the technological, institutional, and stakeholder levels, this approach effectively addresses the challenge of building an innovation and entrepreneurship education ecosystem empowered by AI. It promotes deep integration between the education chain, talent chain, industrial chain, and innovation chain, providing robust support for cultivating high-caliber innovative and entrepreneurial talent in the digital economy era.

8. Conclusions and Outlook

8.1 Theoretical Contributions: Three Innovations Break Traditional Paradigms

This study achieves triple innovation at the theoretical level. Theoretical perspective innovation introduces AI technology as an independent variable into the industry-education integration research framework for the first time, revealing AI's mechanism for restructuring educational resource allocation and stakeholder collaboration models. This addresses the limitation of existing research treating technology as merely an auxiliary tool. Model construction innovation proposes a quadruple-subject ecosystem framework ("government-university-enterprise-AI technology platform") for collaborative synergy. It analyzes the boundaries of authority and responsibility among subjects in talent cultivation and their value exchange pathways through dynamic coupling mechanisms, breaking away from the static mindset of traditional university-enterprise binary cooperation. Practical Path Innovation: Designs an "AI+ Innovation & Entrepreneurship Education" implementation plan featuring replicable modules such as intelligent course generation systems, virtual industrial training bases, and cross-stakeholder data sharing platforms, providing a technical blueprint for ecosystem deployment.

8.2 Practical Implications: Differentiated Collaborative Development Strategies

Based on ecosystem operational principles, the study proposes differentiated implementation guidelines: Universities must accelerate AI education infrastructure development, advance interdisciplinary curriculum reform, create "AI + discipline" integrated course systems, and establish faculty AI competency enhancement mechanisms; Enterprises should deeply engage in setting talent cultivation standards, open real-world industrial data and scenarios, jointly build AI-driven practical teaching platforms, and translate corporate innovation needs into teaching projects. Governments must improve policy support systems, establish special funds to support AI education technology R&D, create cross-regional ecosystem evaluation mechanisms, and break down collaboration barriers through data openness and sharing.

9. Future Research Prospects

9.1 Methodological Expansion: Longitudinal Tracking and Empirical Validation

It is recommended to adopt a longitudinal tracking research approach for 5-8 years of long-term observation on ecosystem performance. Utilizing panel data analysis techniques, the dynamic relationships among penetration rates, stakeholder coordination efficiency, and talent cultivation quality should be examined to validate the sustainability of the ecosystem model. Concurrently, complex system simulation methods can be introduced to model evolutionary pathways under different

policy interventions, providing scientific basis for targeted policy formulation.

9.2 Frontier Technology Exploration: Impact Mechanisms of Disruptive Technologies

Focus should be placed on reconstructive effects of emerging technologies like generative AI and the metaverse on ecosystems. Research should delineate the application boundaries of generative AI in personalized learning path planning and intelligent evaluation of entrepreneurial projects. Explore implementation pathways for metaverse technologies to construct immersive cross-regional training scenarios, while analyzing potential challenges to educational equity and ethical regulatory demands arising from technological iteration.

9.3 Regional Adaptability Research: Differentiated Development Solutions

Addressing China's uneven regional economic development, future research should develop ecologically adaptive transformation plans for areas at different developmental stages. Eastern developed regions may explore deep integration models of "AI + industrial clusters," while central and western regions could prioritize lightweight implementation paths of "AI + inclusive education." Modular design enables gradient diffusion of ecosystems, preventing homogenized development.

This study employs a closed-loop analysis of "problem-theory-practice-prospects" to address core challenges in industry-education integration during the digital economy era: "collaborative inefficiency," "resource disconnect," and "evaluation gaps." Future efforts should continuously monitor the dynamic equilibrium between technological transformation and educational principles, building an AI-empowered innovation and entrepreneurship education ecosystem with Chinese characteristics through innovation grounded in tradition.

References

- [1] ZHANG Z B, GUO B B, XIONG J. Strategic Arrangements and Practical Breakthroughs in China's Digital Economy Development in the New Era. *East China Journal of Economics and Management*, 2025, 39(09): 1-9.
- [2] HAN N, LI Z, JIA Y N. Exploration and Practice of Industry-Education Integration Pathways for Practical Education in the Context of Grand Ideological and Political Education. *Beijing Education (Higher Education)*, 2025, (10): 68-70.
- [3] YU X M. Creating Application Scenarios in Six Key Areas Including Digital Economy and AI. *Shanghai Securities News*, 2025-11-08, 001.
- [4] ZHANG C L. Analysis of Challenges and Strategies for Building High-Level Specialty Clusters in Vocational Colleges Under the "Double High" Initiative. *Talent & Wisdom*, 2025, (31): 169-172.