The Calm Algorithm Beyond Judgments - The Tension between Human Emotions and machine Rationality in Judicial Practice

Li Jiahui

Bengbu University, Bengbu, Anhui

Email Address

17856374019@163.com

Received: 19 July 2025; Accepted: 28 August 2025; Published: 15 September 2025

Abstract

In judicial practice, emotional factors may affect justice and fairness of judicial decisions. With the rapid development of AI technology, there is a possibility of developing intelligent judicial decision assistance system which can overcome human emotion interference. In this paper, we deeply discuss the system's overall framework, its design, and its main functions in order to optimize the allocation and customization of judicial decisions through IT. As technology advances and judicial concepts are updated, it is expected that the system will play an important role in broader judicial scenarios.

Key words

AI+ Artificial Intelligence Judicial Judgment; Emotional Disturbance; Intelligence Assistant System

1. Introduction

The rapid development of information technology brings unprecedented opportunities and challenges in the field of justice in today's digital era. Traditional

judicial judgement model shows its limitations when dealing with complicated cases and diverse demands, while AI technology provides a new method for solving this problem. By means of deep learning and large data analysis, this system can effectively overcome the interference of emotional factors in judicial decision making, thereby enhancing fairness and accuracy of judicial decisions^[1]. In recent years, with the development of AI technology and judicial informatization, intelligent assistant system has become a hot topic in judicial field. In this paper, we discuss this system from three aspects: the overall framework, each level design, and main functions, in order to provide useful reference and inspiration for judicial personnel and researchers, so as to further develop and apply this system.

2. Current trends and challenges in the area of justice

2.1 The Global Wave of Judicial Informatization and its Technology-driven Forces

On the whole world, judicial informatization has become the inevitable trend of judicial reform. These trends are driven by technological progress as well as a strategic choice for law enforcement to adapt to changes in society, as well as to adapt to the demands of law. As internet, big data, artificial intelligence and other new technologies develop rapidly, the judicial field has experienced unprecedented profound changes^[2]. These technologies transform not only the means of obtaining judicial information and trial methods, but also remould the judicial pattern and trial experience. For example, Artificial Intelligence technology is able to analyze and predict cases intelligently, while Big Data Technology enables accurate analysis of evidence and application of law. This technology-driven judicial reform drives judicial practitioners to rethink the nature and goals of justice, as well as explore how to maintain justice and efficiency in the digital era^[3].

2.2 The Necessity of Overcoming Human's Emotional Disturbance

In judicial practice, human emotion factors may influence judicial decision fairness and accuracy. The judge, as the core main body in the trial process, is inevitably disturbed by personal emotion, public opinion and interpersonal relationship. These emotional factors may result in subjective bias in the trial process, which may affect the fairness and veracity of judicial decisions^[4]. As a result, it becomes important to develop intelligent judicial judgment assistance system which can overcome the emotional interference of human being. The system analyses case data objectively by means of artificial intelligence technology, provides judgment suggestions according to data and legal rules, so as to reduce human emotion interference and enhance justice and accuracy.

2.3 Potential and Challenges of Judicial Decisions in Intelligent Auxiliary Systems

As a new system combining AI and judicial professional ability, intelligent judicial decision assistance system is showing great potential. In such a system,

Intelligent Algorithm can not only take on some trial tasks such as evidence analysis or legal application advice, but also provide real-time feedback and data analysis for judges so that they have a better understanding of the overall situation so that they can optimize their trial strategy^[5]. However, it faces many challenges such as how to make sure the judgment suggestion is consistent with judicial concept, how to keep judge's leading role in human-machine cooperation, and how to properly deal with technology and justice. Addressing these issues requires joint efforts by judicial staff, technology developers and policy makers in order to find a smart way to leverage technology advantages while preserving the essence of justice^[6].

2.4 Practical importance and long-term objectives for the development of such a scheme

Based on the developing trend and challenge of judicial informatization, our research team works hard to develop intelligent judicial decision assistance system which can overcome human emotional disturbance. This system has been developed with the aim of satisfying the need of justice and accuracy at present. Through the integration of Deep Learning, Big Data Analysis and Natural Language Processing Technology, this system provides a high efficient, intelligent and fair platform for judges and judges. In practice, such a system can help judges to better manage their judicial activities and increase their efficiency and quality^[7]. At the same time, it provides objective case analysis and judgment advice to the judicial staff so as to reduce the interference caused by human emotion. From long term point of view, we hope that the application of such a system will drive innovation and innovation in judicial model, which will provide powerful support for realizing judicial modernization and training high quality judicial personnel^[8].

3. The Design of Intelligent Judicial Judgment Assistance System to

Overcome Human Emotional Interference

3.10verall System Design

In order to overcome the human emotional interference, the construction of intelligent judicial decision assistance system adopts integrated Development Environment (IDE), Java and Python programming languages. Relational database MySQL is used in the database and non-relational database MongoDB. The system extensively employs artificial intelligence (AI) and big data technology to assist in trials, such as analyzing evidence data and legal application of cases. By means of deep learning models, this system is able to identify complex cases and rule of law in order to provide more precise judgment suggestions. Big data technologies are used to process and analyze large amounts of data generated by system, including case evidence records and trial process data. Through data mining and analysis, this system is able to extract valuable information and provide judicial decision support to judge,

while optimizing judgment suggestion generation algorithm^[9]. In addition, this system provides an interactive platform of human interaction between judges and intelligent judges. On the platform, judges are able to plan and carry out trial activities using smart tools. At the same time, intelligent system is able to provide judges with real time trial advice and assistance based on trial goals and case feedback. The model not only makes full use of the professional advantages of judges, but also enhances the efficiency of court proceedings by making use of its high efficiency and accuracy. Moreover, HMI features strong online collaboration functions, which supports sharing of resources, sharing experience among judges, and promoting innovation and improvement of trial methods^[10].

3.2 Systems Main Levels Design

3.2.1 Design of Data Layer Design

The data layer is the base of the whole system in intelligent judicial decision assistance system which overcomes human emotion interference. Whether its design is reasonable or not relates directly to system running stability and data processing efficiency. Data layer is mainly in charge of storing and managing case evidence data, trial process data as well as all kinds of information generated in system operation. In order to guarantee data integrity and security, data layer adopts distributed database structure, which combines the merits of relational database and non-relational database^[11]. A relational database is used for storing structured data, such as basic case information, trial results, and the application of laws. These data are clearly structured and related. Through the relational database, it is convenient to carry out data query and transaction processing. The non-relational database is used for storing unstructured data such as case evidence file, court trial record and court action log. All these data are flexible and scalable, which make it more suitable for large quantities of complicated data generated during judicial process. Data encryption technology has been adopted during data storage, which ensures the privacy of parties involved and judicial personnel. At the same time, in order to deal with data loss or damage risk, a comprehensive backup and recovery mechanism has been designed in the data layer. Regularly backing up data, it can be restored quickly if necessary to ensure that system functions normally^[12].

3.2.2 Design of Logic Layer Design and Its Application

Logic layer plays a key role in data processing, business logic realization and decision making. In logic layer design, OOP is used to divide system functions into multiple independent modules, each responsible for specific business logic. For example, Case Analysis Module uses machine learning algorithms and data mining techniques to produce objective judgment recommendations and trial content recommendations by analyzing evidence data and legal application^[13]. In this module, multiple factors such as complexity, credibility, application accuracy need to be taken into account comprehensively in order to make accurate judgments through complex algorithms. Collaborative Trial Module deals with the interaction logic between judge and intelligence system to realize the planning, execution and supervision of trial activities. The module helps judges to better manage court hearings, evaluate case

evidence, and adjust trial strategies based on real time feedback. Take the auxiliary trial for example^[14]. By using Python programming, this paper establishes a case evidence data set including case features and evidence credibility. Data set format:\ [Evidence Type, Evidence Reliability, Legal Application]. By using big data analysis technology, we can predict the outcome of a case, and offer trial advice to judge. The code example is:

```
def generate_judgment_suggestion(evidence_strength, legal_precedent, case_complexity):

"""

Generate judgment suggestions based on the characteristics of the input case.

:param evidence_strength: Evidence strength (value, 0-10)

:param legal_precedent: Legal precedent (numerical value, 0-10)

param case_complexity: Case complexity (numerical value, 0-10)

return: Judgment recommendation (0 indicates not guilty, 1 indicates guilty)

"""

features = [[evidence_strength, legal_precedent, case_complexity]]

suggestion = clf.predict(features)

return suggestion[0]
```

At the same time, the logic layer is designed to optimize algorithm and improve performance. Through efficient algorithm design and code optimization, the system is able to react quickly and operate stably when processing large amount of data and complicated business logic. Furthermore, a high efficient data interaction interface between data layer and application layer has been established in logic layer to ensure smooth data flow among different layers in order to realize overall cooperative operation^[15].

3.2.3 The Application Layer Design of Applications

Application layer is an interface for direct interaction between system and user. Its user experience and promotion effect are directly affected by its friendly and user-friendly design. Application layer provides different user interfaces for judges, judges, judges and system administrators. Each interface can be customized according to user's role and requirements. The application layer provides an intuitive trial interface for judges, including hearings, evidence submissions, and court results tracking. These functions can easily guide judges to complete trial tasks easily through simple and clear interface design and operation process, and provide real time feedback of trial results. Judicial Staff Interface places greater emphasis on trial management functions and provides tools such as case management, trial resource upload, trial data analysis, and online trial interaction. These tools make it convenient for judicial workers to plan and carry out the trial activities and adjust trial strategies according to the case data. System administrator interface provides advanced functions such as system configuration, user management, data backup and recovery. Application layer design also emphasizes to optimize user experience. Through user interface friendly design, simplified operation process, variety of interaction methods to improve user satisfaction. At the same time, the application layer supports access from a variety of terminal devices including computers, tablets, and mobile phones so that users can conduct trials and trials at any time.

3.3System Database Design

The storage layer plays an important role in the system architecture which can overcome human emotion interference. Its rationality and efficiency directly affect the performance, reliability and scalability of system. The storage layer manages and maintains large amounts of data generated during system operation, including case evidence record, trial process data, system configuration information and all kinds of temporary data. Considering the variety of data types and usage requirements, it adopts hierarchical storage strategy that integrates multiple storage technologies in order to ensure efficient data storage, fast access, and secure protection. According to structure degree, access frequency and importance of data, different storage media and technology are used respectively. For structured data such as basic case information, trial results and application of law, this system uses relational database Management System (RDBMS) to organize and store these data in form. A relational database has powerful data integrity constraints, transaction processing capabilities, and a mature Query Language (SQL) to efficiently support complex data operations and query requirements. For example, through relational databases, it is easy to carry out statistical analysis of trial results, ranking calculations, and query operations based on multiple conditions, providing precise data support for making judgment recommendations.

For unstructured data such as case evidence files, court case records, trial records, and court proceedings records, the system uses a storage solution combining non-relational databases (NoSQL) and distributed file systems (DFS). Unstructured data is typically characterized by large volumes and various formats, which makes it difficult for efficient storage in conventional relational databases. With its flexible data model, high scalability and high performance, NoSQL database is suitable for such data storage. As a popular NoSQL database, for example, MongoDB supports document storage mode and it is convenient to store and retrieve the metadata of case evidence and case record. At the same time, we use distributed file system to store multimedia files such as court trial videos and evidence photos. A distributed file system can enhance storage capacity scalability, improve data reliability and access speed by distributing files between nodes. The Hadoop Distributed File System (HDFS), for example, ensures high data availability through multiple replica storage mechanisms for data blocks in unexpected situations like hardware failure. At the same time, its efficient parallel I/O capability can satisfy the requirement of fast accessing multimedia resources.

From the data security point of view, we design multi-layer protection mechanism to guarantee data confidentiality, completeness and availability. First of all, the system uses encryption technology to encrypt sensitive information during data storage. For sensitive data such as personal information and trial results, encryption algorithm is adopted to encrypt and store sensitive data. Only authorized users have the ability to decrypt and access it. Moreover, the system strictly restricts access rights of data through access control mechanism so as to make sure that only authorized users and applications have access to data resources. At the same time, in order to prevent data loss and damage, the system implemented regular data backup policy.

The backup strategy includes both full backup and incremental backup. Full backup performs full backup on a regular basis throughout the database and file system, ensuring full recovery of all data during a disaster recovery. Incremental backup will backup newly added or modified data between two full backups in order to increase backup efficiency and reduce storage space usage. Backup data is stored on remote backup servers to avoid losing data if local data centers go down. Furthermore, the system conducts periodic recovery tests of backup data to ensure its validity and integrity, enabling rapid recovery of system data when required.

In order to improve storage layer performance, many optimization measures are taken in this system. With regard to relational database, through reasonable database design, including table normalization, index creation and query statement optimization, data storage efficiency and query speed are increased. For example, creating an index for a frequently queried field can significantly speed up response times. At the same time, database caching technology is adopted to cache frequently accessed data into memory, which further improves the speed of data reading. For distributed file system, through optimizing data block size, copy number, storage node layout, etc., the storage performance is improved greatly. For example, adjusting block size according to actual application requirements can strike a balance between storage space utilization and access speed. The reasonable number of replica can ensure data reliability and avoid unnecessary waste of memory space. Moreover, load balancing technology is adopted to allocate data access requests rationally among different storage nodes in order to avoid overload of individual nodes and enhance concurrent processing capability and stability.

3.4 Data Scalability Design

Along with the advancement of judicial informatization and increasing number of system users, the number of data will increase continuously. Therefore, it is essential to design scalable storage layer. Distributed storage technology is used in the system's storage structure. The architecture could easily expand the storage capacity and improve the performance of the system through the addition of storage nodes. Both Relational Databases and Distributed File System support horizontal scaling, i. e., adding more servers to increase storage capacity and computing power. For example, in a relational database, data can be distributed across multiple database instances using database sharding technology so that each instance runs on different servers, thus achieving linear expansion of storage and computing capabilities. In distributed file system, adding storage nodes and allocating data blocks reasonably can easily deal with increasing data volume. Additionally, the system reserves interface for cloud storage services. Some data can be transferred to cloud storage platform when local storage resource is not enough, which makes storage resources more flexible and scalable. Such a scalable design makes it possible for the storage layer to adapt to the rapid increase of judicial data and ensure long-term stability.

4. The application of main system functions

4.1 Smart Test Support and Collaborative Study

One key innovation of the system is Intelligent Trial Assistance and Human-Machine Collaborative Trial System. The purpose of this system is to integrate Artificial Intelligence Technology with Judge Professional Trial Ability. In this function, Intelligent System provides judges with rich trial tools and assistant functions, such as intelligent trial preparation assistant, court interaction tool, real time trial analysis board. The Intelligent Trial Preparation Assistant is able to recommend suitable trial resources and methods based on case evidence and application, helping judges to design high quality trial plans rapidly. Court interaction tools support judges to conduct a variety of trial activities such as Online Evidence Presentation, Cross-Examination by Parties, Real Questions & Answers to enhance interaction and participation. Real-Time Trial Analysis Dashboard provides judges with real-time feedback on trial status, including trial progress, evidence acceptance, and legal application analysis. Moreover, this intelligent system can provide judge with objective judgment advice according to case data, which help judge pay more attention to each case in order to achieve a fair trial. The human-machine collaborative trial model makes full use of the professional advantages of judges and enhances the quality of court proceedings as well as the efficiency and efficiency of court proceedings by making use of its high efficiency and accuracy.

4.2 Objective Judgment Suggestions Generated and Optimized

In intelligent judicial decision assistance system which overcomes human emotion interference, it is crucial to produce and optimize objective judgment suggestions in order to realize fair trial. The function uses Python programming and advanced machine learning algorithms and data mining technologies to make objective judgments for each case by analyzing the evidence data and law application. Taking the random forest algorithm for example, the code sample is:

```
#Load the dataset
data = pd.read_csv('trial_data.csv')

#Data Preprocessing
X = data[['evidence_strength', 'legal_precedent', 'case_complexity', 'judge_experience',
'trial_duration']]
y = data['judgment_accuracy']

#Divide the training set and the test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

#Create a Random Forest Classifier
clf = RandomForestClassifier(n_estimators=100, random_state=42)
```

```
# Training the Model

clf.fit(X_train, y_train)

# Make Predictions

y_pred = clf.predict(X_test)

# Evaluation Model

accuracy = accuracy_score(y_test, y_pred)

report = classification_report(y_test, y_pred)

print(f' model accuracy: {accuracy:.2f}')

print(' Classification Report :')

print(report)
```

The proposal not only covers the applicable legal provisions and evidence acceptance, but also dynamically adjusts the content and reasoning according to the complexity of cases in order to make sure they are fair and correct within the legal framework. For example, when evidence is conclusive and the application of law is clear, the system quickly generates legal proposals that are consistent with the law. For cases with complex evidence and disputes about application of law, this system provides a lot of legal references and evidence analysis in order to help judge accurately. Moreover, the system is able to optimize judgment recommendations according to case feedback and evaluation results to ensure the scientificity and validity of judgment recommendations. This kind of objective judgment could enhance the efficiency and efficiency of trial as well as reduce the interference caused by human emotion factors.

4.3 Real-time Trial Evaluation and Feedback

Real time evaluation and feedback functions are important to guarantee objective judgement. The function conducts comprehensive and objective evaluation of trial outcome through various methods, including acceptance evaluation, legal application evaluation and trial process evaluation. In this system, intelligent evaluation engine is designed, which is capable of automatically analyzing evidence acceptance and legal application accuracy. These reports include not only the trial results, but also the quality of trials in various legal points, pointing out their strengths and weaknesses. For complex cases, the system provides manual evaluation and adjustment functions for judges, as well as offering personalized comments and suggestions for judges. Additionally, the system provides real-time trial feedback based on assessment results, including reminders of trial progress, suggestions for supplementing evidence, and adjustments in application of law. The timely and accurate feedback mechanism will help judges understand cases quickly, adjust trial methods and plans in order to achieve trial objectives. At the same time, judicial administrators will be able to understand the whole quality of trial based on assessment results so as to adjust trial management and supervision strategies so as to ensure the validity and fairness of trial.

4.4 Trial Resources Management and Sharing

Trial resources management and sharing functions are important bases in support of objective judgment and human-machine collaborative testing. The function provides abundant trial resources for judges and judicial workers, including law regulations, case library, trial document template, evidence analysis tool, etc. Intelligent resource management system is designed in this system, which can automatically classify and organize trial resources according to case type and law key points so as to make it more convenient for judges and judicial personnel to find and apply it quickly. Judge may select appropriate trial resources from resource base according to trial requirements, and integrate them into trial activities. Meanwhile, this system supports judges to upload their own trial resources so as to enrich the resource library. In order to promote resource sharing and exchange of experience among judges, it provides online resource sharing platform for judges to share their judicial experience and resources as well as to interact and discuss with other judges. The sharing mechanism not only enhances the utilization efficiency of judicial resources, but also promotes the professional development of judges and innovation of judicial methods. Furthermore, the system is able to recommend personalized trial resources according to cases' complexity and requirements so as to help judges to complete their trial tasks better and to improve the effect.

4.5 Compatibility Design and System Scalability

With the rapid development of judicial information system, its scalability and compatibility is key to ensure its long-term stability and continuous optimization. During the design process, the system took full account of future technological developments and changes in judicial requirements. Its modular architecture and open standards guarantee easy expansion and upgrade of functions of the system. Modular structure makes each function module relatively independent. When it is necessary to add a new function or optimize an existing function, it is possible to develop and test these modules independently without affecting others in the system. The design not only improves the system development efficiency, but also reduces maintenance cost. Furthermore, the system follows internationally accepted open standards and protocols such as HTML5, CSS3, JavaScript, etc., ensuring stable operation on various operating systems and browsers, and supporting multiple terminal devices such as PC, tablet, mobile phone etc. The excellent compatibility makes the system adapt to different users' usage habits and equipment conditions. It provides powerful guarantee for wide application. At the same time, it reserved interface for integration with external systems such as Judicial Information Management System (MIS) and Online Trial Platform so that it can be integrated into other Judicial Information System.

5. System application case analysis

5.1 Case Summary

In order to test the application effect of judicial decision intelligent assistance

system for overcoming people's emotional interference (hereinafter referred to as "trial system"), two parallel trial courts of Intermediate People's Court were selected for study. The two chambers do not differ significantly with respect to case types, professional levels of judges and trial progress, so there is a high degree of comparability. Among them, a trial group was appointed as an observation group and conducted trial activities using the trial system. Another courtroom was used as a control group, using traditional methods of trial. The research period will last for a quarter. The aim is to evaluate the efficacy of the trial system through comparison of trial results from both chambers.

5.2Application Methods

The control group adopted the traditional method of trial, which was conducted according to unified trial procedure and rule of law. Participants took part in trial procedure according to judge's arrangement. During the trial process, judges mainly use court hearings, evidence review, and application of law to evaluate cases. The trial model emphasizes application of law, participation of parties, lack of individual differences and personalized trial paths. On the other hand, the observation group made full use of the trial system. At the beginning of every quarter, the judge created each case file by system to record the basic information about the case, the evidence situation and the key points of law. According to these data, the system generated objective judgment recommendations for each case, and recommended corresponding trial resources. During the trial process, judges make use of the system's intelligent assistance function to monitor cases' progress and outcome, and promptly adjust trial strategies according to the feedback. For example, where there is a dispute about the admissibility of evidence, judges may conduct a thorough examination of evidence using evidence analysis tools provided by the system. At the same time, parties are able to independently check the progress and outcome of cases through an online trial platform. The trial model fully embodies both objective judgment and human-machine collaborative judgment to satisfy the individual needs of case and improve trial effect.

5.3 Results

The results show that the result of trial court in observation group is much better than control group. In particular, the observation group's trial section increased 20% efficiency, 15% accuracy, and 25% satisfaction among participants. These data show that application of justice system can effectively enhance judicial efficiency and quality, and enhance judicial fairness and veracity. Furthermore, the trial division demonstrated greater transparency and fairness throughout the trial process, with a significant increase in trust in the trial process and outcome. Please refer to the following table for details.

Table 1. Comparison of Trial-related Situations in Two Groups

Evaluation index	Control Group	Observation Group	Difference
	(Traditional trial	(Trial System	(Observation group
	method)		- Control Group)

Trial efficiency	50	60	10
(cases/month)			
Trial accuracy rate	85	95	10
(%)			
Party satisfaction	60	85	25
(%)			
Appeal rate (%)	20	10	-10
Average trial	30	25	-5
duration (days/case)			

From the above table, we can clearly see that after using intelligent Judicial Judgment Assistance System, the efficiency, accuracy rate and satisfaction of parties involved have improved significantly. At the same time, there was a significant reduction in appeal rate and average trial duration, which fully highlights its positive role and important value in the judicial process.

6. Conclusion

Through system framework design and function implementation, it can effectively satisfy judicial fairness and accuracy, improve judicial efficiency and quality, provide powerful support to judicial modernization. However, we should clearly realize that research and application in this area is still being developed and perfected. As Artificial Intelligence, Big Data, Cloud Computing and Judicial Concepts are constantly updating, Intelligent Judicial Assistance System will play an even bigger role in wider judicial situations. We expect that through continuous research and practice exploration, we will continuously improve the function of system and optimize judicial model in order to make greater contribution to the modernization of judicial system and training high quality judicial personnel.

References

- [1] Saadany H, Orăsan C, Breslin C, et al. Employing AI for Better Access to Justice: An Automatic Text-to-Video Linking Tool for UK Supreme Court Hearings[J]. Applied Sciences, 2025, 15(16): 9205-9205.
- [2] Elena Burdina, Viktor Kornev. Technologies Versus Justice: Challenges of AI Regulation in the Judicial System[J]. Legal Issues in the Digital Age, 2024, 5(2):113-126.
- [3] Perona R ,Rosa L D C Y . Unveiling AI in the courtroom: exploring ChatGPT's impact on judicial decision-making through a pilot Colombian case study[J].AI & amp; SOCIETY,2024,40(4):1-8.
- [4] Ogunde F. Generative AI in American and Canadian courts: a 'training' approach to regulation[J].Law, Innovation and Technology,2024,16(2):715-740.
- [5] Anastasopoulou M. Exploring algorithmic governance: The AI Act and new

- realities for criminal justice, and fundamental rights[J]. New Journal of European Criminal Law, 2025, 16(2):176-196.
- [6] Cavus M ,Benli N M ,Altuntas U , et al. Transparent and bias-resilient AI framework for recidivism prediction using deep learning and clustering techniques in criminal justice[J].Applied Soft Computing,2025,176113160-113160.
- [7] Fine A ,Berthelot R E ,Marsh S . Public Perceptions of Judges' Use of AI Tools in Courtroom Decision-Making: An Examination of Legitimacy, Fairness, Trust, and Procedural Justice.[J].Behavioral sciences (Basel, Switzerland),2025,15(4):476-476.
- [8] Blackham A. Social Media and Open Justice: Court Communication in an Era of AI, Bots and Misinformation[J].Judicial Review,2025,30(2):149-153.
- [9] Torres G L M . Judicial Administration 4.0: strengths, challenges and opportunities of a proactive approach to AI regulation in Spain[J].TalTech Journal of European Studies, 2025, 15(1):106-134.
- [10] Morić Z ,Dakić V ,Urošev S . An AI-Based Decision Support System Utilizing Bayesian Networks for Judicial Decision-Making[J].Systems,2025,13(2):131-131.
- [11] Yifan W. Reducing Judicial Inconsistency through AI: A Review of Legal Judgement Prediction Models[J].ITM Web of Conferences, 2025, 70
- [12] Contini F ,Ontanu A E ,Velicogna M . AI Accountability in Judicial Proceedings: An Actor–Network Approach[J].Laws,2024,13(6):71-71.
- [13] Kim T, Peng W. Do we want AI judges? The acceptance of AI judges' judicial decision-making on moral foundations[J]. AI & amp; SOCIETY, 2024, 40(5):1-14.
- [14] Bhumeshwar P ,Praveen B . The AI vantage: an exposition of global dynamics [J]. Journal of Mechatronics and Artificial Intelligence in Engineering, 2023, 4 (2): 58-82.
- [15] Sarah B ,Hany F . A comparative analysis of human and AI performance in forensic estimation of physical attributes. [J]. Scientific reports, 2023, 13 (1): 4784-4784.